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Abstract

This paper argues that the theory of structured propositions is not undermined by the
Russell-Myhill paradox. I develop a theory of structured propositions in which the Russell-
Myhill paradox doesn’t arise: the theory does not involve ramification or compromises to
the underlying logic, but rather rejects common assumptions, encoded in the notation
of the A-calculus, about what properties and relations can be built. I argue that the
structuralist had independent reasons to reject these underlying assumptions. The theory is
given both a diagrammatic representation, and a logical representation in a novel language.
In the latter half of the paper I turn to some technical questions concerning the treatment
of quantification, and demonstrate various equivalences between the diagrammatic and
logical representations, and a fragment of the A-calculus.

Metaphysicians have often entertained the idea that reality has structure of some sort: that
propositions, properties, and relations might have constituents that are structured in some
way or other, and that this structure might do metaphysical work, for instance, by clarifying
the relationship between the fundamental properties and relations and everything else, or the
relationship between facts and their grounds.! In light of this, there has been a renewed interest
in the ‘Russell-Myhill paradox’, an argument that purports to reduce the structural conception
of reality to absurdity.? While I myself have doubts about whether a highly structured view
is really necessary to do the sort of work that metaphysics needs, we cannot properly make
this assessment without a clear view of the philosophical landscape.? The field of higher-order
metaphysics is young—the program of mapping out the attractive and consistent hypotheses
about the structure of reality is still in its early stages, and a paradox-free theory of structure
seems key to completing this picture.

Extant theories of structured propositions typically take a “quasi-syntactic” approach to
structure. The structure of propositions and properties are modeled on the structure of sen-
tences and predicates in a language.? This paper provides a different model of structured

*Many thanks to two anonymous referees at this journal for many helpful suggestions about presentation
and content, and to Arthur Wu for spotting several typos.

1In the analytic tradition, this idea of structure plays a prominent role in the thinking of the logical atomists
(Russell (1940), Wittgenstein (1961)), and many versions of this idea have been articulated since; for two recent
and different appeals to some sort of structure in reality for metaphysical theorizing see Sider (2011) and Fine
(2012).

2See Dorr (2016), Goodman (2017), Fritz (forthcoming) for recent papers on the Russell-Myhill paradox that
draw out these implications for metaphysical theorizing. The paradox traces back to Russell (1937) appendix
B and Myhill (1958).

31 have laid out my preferred account of fundamentality and metaphysical definability in this journal, within
a framework that posits far less structure in reality than posited by the structuralist (Bacon (2020)).

4See King (2008) for a survey of such approaches. Even those sensitive enough to the threat of paradox to
offer consistency proofs will often construct ‘quasi-syntactic’ models of their theories; see for instance Fritz et al.
(2021).



propositions, a fundamentally pictorial one. A relation is represented by a diagram contain-
ing holes into which diagrams representing other entities can be slotted. Among other things,
the pictorial view provides a very simple diagnosis of the Russell-Myhill paradox: the princi-
ples refuted by that paradox, while a commitment of the quasi-syntactic viewpoint, are simply
unsound in the pictorial theory.

Section 1 begins by distinguishing our investigation of structured theories of reality from
adjacent theories concerning structured representational objects which may very well be best
modeled syntactically. In section 2, I introduce the pictorial theory in terms of ‘relational
diagrams’ and use it to give a preliminary diagnosis of the Russell-Myhill paradox in section
3. Sections 4, 5 and 6 concern more traditional logical representations of propositions using
A-notation. It is argued that while the standard theories governing A due to Church and Curry
build in substantive metaphysical assumptions that make it unsuitable for theorizing about
structured relations, one can obtain a structure friendly formalism by restricting the possible
A-terms in a natural way. The resulting theory trivially validates the standard rules governing
A: A-abstraction corresponds to poking a hole where a constituent used to be in a relational
diagram, and application corresponds to filling that hole again with a constituent. By contrast,
the standard rules are invalid on the quasi-syntactic model leaving the interpretation of A-terms
highly unconstrained.’? In section 7, I turn to the treatment of quantification and identity in
this theory, and section 8 explains how the theory avoids the Russell-Myhill paradox. Some
conjectures and theorems concerning the consistency of this theory are formulated.

1 Metaphysical and Representational Structuralism

Theories of structured propositions have been brought to bear on a variety of issues in philoso-
phy, and the motivations and goals of these theories can be materially different. So it is prudent
to begin by distinguishing these motivations and goals. I will use the term proposition to mean,
roughly, whatever stands to a sentence or a thought as a person might stand to a name or
concept for that person (e.g. Cicero to the name ‘Tully’). Putting it somewhat glibly, a propo-
sition, as I will use the term, is a part of reality, not merely a way of representing reality.® We
may distinguish, then, between representational structuralism and metaphysical structuralism.
Representational structuralism is the view that representational objects, including sentences,
thoughts, modes of presentation, concepts and so on, are structured.” Metaphysical structural-
ism, by contrast, is a metaphysical view which maintains, superficially, that reality itself —

5Some problems concerning A on the quasi-syntactic model are also discussed in Dorr (2016) p58 and Bacon
(2020) p562 (although see Hodes (2015) p392 for an alternative understanding of the syntactic view which
keeps the standard rule governing A\). The pictorial view will also avoid awkward questions that arise for the
quasi-syntactic view, such as ‘what are the propositional constituents corresponding to bound variables on the
quasi-syntactic view?’

61 am not entirely happy with this gloss. On the most flatfooted way of understanding what it is to be a
‘part of reality’, sentences and other representational objects are just as much parts of reality as propositions
are. I think the distinction has more to do with which things are doing the representing and which things are
being represented, but I think the present gloss does enough to make clear what the distinction I am talking
about is.

"The thesis that sentences and other linguistic items are structured is not particularly controversial. However
many theorists posit entities that mediate between language and reality — modes of presentation, mental
representations, LFs and so on. Others theorize in terms of the word ‘proposition’, but treat them as ways of
representing the world, as opposed to parts of the world itself. I count all of these entities as representational, and
the view that they are structured as instances of representational structuralism. Thus many prominent defenders
of structured “propositions” — including Soames (2013), or King (1996) — will count as representational
structuralists by my accounting. Soames, for instance, talks about distinct but ‘representationally identical’
propositions: a contradiction in terms, according to my use of ‘proposition’.



propositions, properties, individuals, and so on, are built up out of simpler constituents or are
themselves simple.

Structuralism is typically invoked for two sorts of reasons. One motivation is to account for
certain attitude reports. Perhaps Max is not very good at arithmetic, so that we might want
to assert 1, but deny 2

1. Max believes that 117 = 117.
2. Max believes that 117 = 98 + 19.

The advocate of a structured theory of propositions might recommend their theory as way of
accommodating these judgments. For if the proposition that 117 = 117 and the proposition
that 117 = 98 4+ 19 are different — 98 4 19 is structured while 117 is simple — then there is
not even a prima facie obstacle to accepting 1 whilst rejecting 2.

The other is more theoretical in nature, and arises from the apparent need to be able
to theorize about the hierarchical structure of reality. Several metaphysical frameworks call
for very fine distinctions between properties and propositions. For instance, according to some
philosophers, the property of being a vixen is less fundamental than the properties of being a fox
and being female: the former is built, or metaphysically definable, from the latter two. The most
fundamental properties and relations, according to this picture, are then the metaphysically
simple entities, that are not built out of any constituents. Metaphysical structuralism provides
a convenient model of propositions and properties in which to draw these sorts of distinctions.®

As T see it, the argument from attitude reports at best provides a motivation for represen-
tational structuralism. Representational structuralism can be invoked to resolve the problem
of attitude reports in several ways. Perhaps the objects of belief are not propositions in my
metaphysically loaded sense — the sort of things that stand to sentences as people stand to
names. Or perhaps they are, but we only stand in attitudinal relations to them relative to
another contextually salient parameter — a mode of presentation — which is structured.® One
reason to resist the parallel argument for metaphysical structuralism is simply this: perhaps
the concept, or mode of presentation ‘117’ and ‘98 + 19’ are different because the former is
simple, while latter is not: it contains three constituents ‘98’, ‘+’, and ‘19. But the number
98 + 19 is not structured: it does not contain 98, or the operation of addition as constituents.
To say otherwise would be mathematically revisionary: if 98 + 19 had three constituents, and
117 did not, they would be distinct by Leibniz’s law — yet it is a mathematical fact that they
are the very same number.

The key point here is that our purpose is to develop a version of metaphysical structuralism,
and the result should not be held up to the demands or goals of a representational structuralist.
In particular, a metaphysical structuralist has no special reason to think that a complex term
(such as ‘984 19’) corresponds to something complex in reality, that a simple term corresponds
(such as ‘vixen’) to something simple in reality, or that the structure of reality is necessarily
revealed by the structure of language at all.'?

2 Relational Diagrams

In this section, I introduce a purely pictorial way to represent structured propositions, properties
and relations: relational diagrams. The decision to begin this way is partly motivated by the

8 Albeit not the only one. For non-structuralist accounts of reality that allow for similar theoretical work, see
Dorr (2016) and Bacon (2020).

9See, for instance, Crimmins and Perry (1989), Richard (1990), Goodman and Lederman (2021).

100ne might argue that the simple term ‘vixen’ expresses a metaphysically complex property involving the
properties of being female and being a fox.



desire to cement intuitions early on, but also to emphasize that the theory I am developing is
really a precisification of an already existing practice for picturing structured propositions.'!
Subsequent choices in the formalisation of the view, which might look arbitrary when stated
in a linear written notation, will fall directly out of this picture. Secondly, relational diagrams
enjoy one nice feature which more conventional written notations lack. There is a one-to-one
correspondence between the relational diagrams and the structured propositions and relations
they are intended to represent. Our written notations developed later, while more amenable to
familiar logical analysis, will not have this feature — distinct representations will denote the
same structured entity.

A structured entity is either simple, or made out of smaller immediate constituents, them-
selves structured entities. Only certain structured entities can be combined to form complex
wholes. For instance, is tall and Alex may be combined to make the structured proposition
Alex is tall, and it’s not the case that can be combined with snow is white to make it’s not the
case that snow is white. But the operator it’s not the case that and Alex cannot be combined,
nor can is tall with snow is white. This fact is reflected in the language used to denote these
entities — there is no way of grammatically combining the name ‘Alex’ with the operator ex-
pression ‘it’s not the case that’, or ‘is tall’ with ‘snow is white’. In both these cases the way in
which the two entities are combined — a proposition with an operator, or an individual with
a property — is the same, and we will call this mode of combination application. (We will
encounter other modes of combination later.)

Type theory provides a convenient framework for systematizing facts about which entities
can and cannot be combined by application. According to this framework, every entity is as-
signed a type. There are types e and ¢ for entities denoted by names and sentences, respectively.
For convenience we refer to type e entities as individuals, and type ¢ entities as propositions.'?
Every other type has the form ¢ — 7, where o and 7 are types. o is the type of entities that
entities of type (0 — 7) can combine with, and 7 is the type of entity that would result from
such a combination. We follow the standard convention of associating brackets to the right,
writing oy — 03 — ... = 0, — 7 instead of (617 = (62 — ... = (05y = 7)...)). Thus for instance,
we will call entities of type t — t operators, because when applied to a proposition they yield
another proposition, and entities of type e — ¢ will be called properties because they can be
applied to individuals to form propositions. A binary relation, like loves, has type e — (e — t)
because it can be applied to two individuals in succession to form a proposition.'3> We shall
focus on the relational types: e is a relational type, and types of the form o1 — ... = 0, — ¢
where 07...0,, are also relational types are relational types (when n = 0 we see that ¢ is a
relational type). All entities of relational type are thus (possibly nullary) relations between
entities of types oy, ...,0,.'* We will frequently write a colon, ‘:’, to mean ‘has type’ — for
instance ‘F': e — t’ means ‘F has type e — t’.

According to this theory, propositions contain constituents which appear a certain number of
times and in a certain order within that proposition. We will depict propositions by completely

11See, for instance, Dixon (2018).

120ne should be careful with these glosses: as Prior (1971) chapter 2 argues, quantification into sentence
position is not accurately paraphrased by singular quantification over propositions. Prior himself, for instance,
is a nominalist and rejects propositions, yet is still willing to quantify into sentence position.

130ne quirk of this choice is that there is an asymmetry in the way that binary relations are treated. Plugging
an individual a into Rs first argument place to produce a unary property is succinctly notated by Ra, whereas
there is no direct way to notate the result of plugging a in Rs second argument place. Shortly we will see that
it can be represented by the more complex A term Az.Rza. This asymmetry shouldn’t be seen as reflecting an
important metaphysical asymmetry.

14This restriction is not entirely unnatural given our earlier remark about non-relational operations like +
(which has the non-relational type e — e — e). We will for the most part assume that individuals are completely
unstructured.



greyed-out boxes. If R is a simple binary relation (i.e. a relation of type e — ¢ — ¢) and a and
b are simple individuals (i.e. entities of type e) then Rab represents the proposition that a Rs
b (e.g. Alice loves Bob), and its relational diagram is:

® ®

It is tempting to say that the leftmost constituent is a and the rightmost constituent is b.
However left and right are clearly properties of physical inscriptions. Geometrical properties
like left and right make no more sense applied to propositions than they do applied to numbers.
A single proposition can be expressed in more than one language. Some languages use different
written conventions, for instance in Hebrew one can express the same proposition one would
express in English with the opposite ordering of words — thus the same proposition can be
expressed by sentences in which the name for Alice appears to the left, or to the right of Bob.
While the chirality of a name in a sentence is clearly an artefact of a languages particular
conventions, we shall adopt the assumption — indeed, the defining assumption of structuralism
— that there is a language independent ordering of the constituents a and b. Given two
propositions, Rab and Sdc, we will assume that we can make interpropositional comparisons
of order — for instance, that a has the same position in Rab as d has in Sdc, even if that is
depicted as ‘left’ in some representations and ‘right’ in others. Provided we are mindful of the
fact that ‘left’ and ‘right’, and ‘before’ and ‘after’, are only meaningful relative to a language
or pictorial representation, however, it is harmless and convenient to use chiral talk in relation
to propositions.

The idea that one can make interpropositional comparisons of order corresponds to what Kit
Fine calls the ‘standard’ theory of structured propositions and relations. But it is worth noting
that there are also less structured views that could be given diagrammatic representations. One
could imagine a variant of our diagrams in which each is presented on a (separate) transparency
instead of paper or a computer screen, with no instruction about which way up it is to be
presented. In which case interpropositional notions of constituency, betweenness and adjacency
would make sense, but order would become meaningless: the former relations are preserved
after turning a transparency over, whereas the latter relation is not. One could perhaps envision
higher-dimensional objects in which even these notions are meaningless.'®

The relation R is also a constituent of this proposition, but our pictorial representation
does not depict it as being before, after or between a and b. Evidently our chosen linear
notation has to take a stand on this: we have adopted the prefix convention of writing R
before the arguments a and b. But even in a language that reads left to right, other notational
conventions are also possible, including infix notation, aRb, often used with symbols like =
and A, or postfix notation aF, baR (analogous to the conventions used by the mathematical
collective Bourbaki). The fact that R has a position relative to a and b could also be argued
to be a notational artefact, forced by the typographic constraint that a relation symbol has to
appear somewhere. I do, in fact, take this position, and will consider an argument that R has
has no straightforward position relative to a and b shortly.

Let us turn from structured propositions to structured relations and properties. I will adopt
a broadly Fregean picture of properties and relations as unsaturated propositions: we may think
of them as propositions with holes poked into some of the argument places. For instance, we

15 A theory of structured propositions where none of these notions are meaningful is described in Fine (2000),
and given mathematical models in Leo (2008) and Leo (2010).



can depict our simple binary relation R, and a simple unary property using relational diagrams
as follows:

F

00 || O

Holes, like constituents, have positions, and may be said to appear to the left or to the right of
other holes and constituents. In the present example, there is a left and a right hole, and no
other constituents or holes.!'6

Non-simple properties and relations can be built by plugging arguments in to holes. For
instance, if R is a simple relation, loves, then you can form a unary property by plugging Alice
or Bob into either hole, creating the complex unary properties Alice loves and loves Bob:

06 |le o

Both are unary properties, and can be applied to an argument c in only one way to make Rac
and Rcb respectively.

It should now be clear why our theory does not assign properties and relations positions in
predications like Rab and Fa. Consider a complex unary property, Sa - ¢, built from a ternary
relation S, of type e = e — e — t, and two individuals a and c:

© 00 |—o o6 6

when a third individual b is plugged into its only hole, some constituents of Sa - ¢ appear to
the left of b and other constituents of Sa - ¢ appear to the right. It seems just as wrong to say
that Sa - ¢ is to the left or right of b as it does to say that California is to the east or west of
Sacramento.

In fact, this feature of the view strikes me as hard to avoid in a structured theory of
propositions. Consider a unary predication Fa. If F has an order relative to a, then there’s
only two options: it appears before the argument, a, or after it. The view that properties appear
before their arguments is inconsistent with some other natural assumptions about structure:
we have the following inconsistent quartet (a completely parallel argument establishes the
inconsistency of the view that unary properties appear after their arguments, so I will not
consider it separately):

1. When you apply a unary property to an argument, the property appears before the
argument in the resulting structured proposition.

16Like physical holes, however, it makes no sense to talk about swapping the two holes in this diagram to make
a new one. This makes for an important disanalogy between holes and constituents, which can be swapped. If
we wished, we could adopt a more cumbersome way of talking that didn’t treat holes as entities in their own
right.



2. If a constituent ¢ occurs before another constituent ¢’ in a proposition p and they have
no constituents in common, then every constituent of ¢ appears before every constituent
of ¢ in p.

3. (a) There is a unary property, F', whose only constituents are loves and Bob, which
when applied to Alice yields the proposition that Alice loves Bob.

(b) There is a unary property, G, whose only constituents loves and Bob, which when
applied to Alice yields the proposition that Bob loves Alice.

4. Either (i) for any a and b, a appears before b, but not conversely, in a loves b, or (ii) for
any a and b, b appears before a, but not conversely, in a loves b.

Here we are taking before as a primitive ordering of the constituents of a proposition; 4 is
stated so as to be neutral about the relation between this ordering and left-to-right order of
written English. I understand ‘constituent’ to mean an improper constituent, so that every
entity counts as a constituent of itself.

4 presents two cases. Start by assuming 4i, and thus that Alice appears before Bob in
Alice loves Bob. By 1, the property F appears before Alice in the proposition that results
from applying F' to Alice which, by 3a, is the proposition that Alice loves Bob. By 2 every
constituent of F' appears before Alice in Alice loves Bob. 3a states the constituents of F' are
Bob and loves, so Bob appears before Alice in Alice loves Bob. But this contradicts 4i, which
states that Bob does not appear before Alice in Alice loves Bob. If 4ii is true, a completely a
parallel argument, involving the property G, can be given.

I take 4 to simply be an articulation of the linear structured view. 3a and 3b state the
existence of the unary properties Bob loves and loves Bob, respectively. And 2 is simply a
plausible principle about constituent order. Indeed, without 2, there is no well-defined notion
of order by which one can compare the immediate constituents of immediate constituents.'”

Until now we have only depicted first-order properties and relations. Operators, like nega-
tion, can also be represented using the same sorts of pictures: if a unary property is a proposition
with an individual shaped hole, an operator is a proposition with a proposition-shaped hole.
Here are relational diagrams for negation and conjunction:

C | IC )

Plugging the proposition, Rab into negations hole, for instance, will yield:

~

(e o)

More generally, we can think of an n-ary relation of type 01 — ... — 0, — t as a proposition
with o7...0,, shaped holes. To keep our diagrams clean, we will indicate the type of a hole in
the surrounding text rather than writing it explicitly into the diagram.

17The notion of a constituent appearing before another in a proposition is well-defined provided the proposition
contains at most one occurrence of each constituent, as in the above argument. Otherwise one needs to invoke
the notion of an occurrence of a constituent.



Diagrams involving higher-order properties applied to properties require special note. Since
the first-order existential quantifiers are often represented as a higher-order property — the
property a property has when it is instantiated — I shall use that as my running example. The
existential quantifier something thus has type (e — t) — ¢, and we depict it as a proposition
with an (e — t) shaped hole. In general, a hole of shape ¢ is what you get from taking a
diagram for a simple entity of type o and inverting grey and white (and, of course, removing
any identifying labels like R or F'). The result of plugging the hole of 3 with a unary property
F of type e — t, e.g. walks, results in the following;:

Note that the hole associated with F' is not filled with a constituent, but is still greyed out.
While it is a hole of the constituent property walks, it is not a hole in the resulting proposition,
something walks. Evidently, something walks is a completely saturated proposition: it shouldn’t
have any holes. Informally, we can think of the greyed out hole as being ‘bound’ by the higher-
order property.!® If this feature of our diagrams seems unfamiliar, compared to the use of
similar diagrams in metaphysics, it is because higher-order properties are rarely depicted in
this fashion.

It is not possible to apply the higher-order property of existence 3. : (e — t) — t to a
binary relation loves, R : e — e — t, since the former only accepts unary properties. But they
can be combined in another way distinct from application that yields a property (as opposed
to a proposition) as output: the property of loving something. Grey always fills the rightmost

holes:

More generally, if you have a higher-order relation R between things of type o1...0%...0,, and
another relation S of type p1 — ... = p; = o0, you can plug S into the kth argument hole of
R to form a relation between things of type o1, ...,0k—1, P1, s Pis Ok+1, -, On. You depict this
by plugging the picture of S into the kth hole in R, and greying out all but the first i holes
appearing in S.

Here is a more complicated example:

(e o]

This can be made by plugging a into Rs first hole, making the unary property Ra. Conjunction
accepts things of type ¢ as arguments for application, but we can use our more general mode
of combination to plug Ra into conjunctions first slot, yielding the e — ¢t — t relation of being
an x and a p such that Alice loves z and p.

3

&

18Note that all higher-order properties ‘bind’ holes in this way; it is not special to quantifiers.



The collection of diagrams representing individuals, propositions, properties and relations
can be more precisely characterized as follows. First we shall define the sorts of diagrams
that are associated with simple entities: individuals and simple propositions, properties and
relations. Below the hole of shape o refers to the result of switching the colours grey and white
in the diagram of a simple entity of type o and removing the label.

1. The diagram for an individual (entity of type e) is a grey circle, labeled by a name for
the individual within the circle.

2. The diagram for a simple proposition (entity of type t) is a grey rectangle, labeled by a
name for the proposition within the rectangle.

3. The diagram for a simple relation of type o1 — ... — 0,, — t consists of a grey rectangle
with holes of shapes o0y...0,, in that order, labeled by a name for that relation in the
outermost connected region of grey.

The last clause is inductive because we may assume we know what diagrams, and thus also
holes, are associated with oy...0,,. Labels will typically be drawn from a signature of non-logical
constants of some language.

Once each simple proposition, property, relation and individual has a relational diagram
associated with it of the appropriate type, we have one rule for constructing diagrams for
complex propositions, properties and relations.'®

4. If you have a diagram d which has holes of shape o;...0...0, in that order, and another
diagram d’ that has holes of shape p;...p;...p; where p;i1...p; are the types of the holes
in a relation of type oy, then you can plug d’ into ds kth hole, greying out the holes
corresponding to p;11...p; to form a relation with holes of type o1...05-1, p1..-pi, Ok41...0n
in that order.

The holes of a relational diagram d (or, the holes the diagram has) are the holes of shape o
for some type o that are (i) contained in d and (ii) are maximal in the sense that they are not
properly contained in any other holes appearing in d.?° The holes of a relational diagram thus
do not overlap and are linearly ordered by the left-to-right order of appearance in the relational
diagram, so we are able to unambiguously talk about the ‘first hole’, ‘second hole’, etc. of a
relational diagram. Note that the operation of simply plugging an argument into the kth hole
of a relation (without introducing any new holes) is a special case of our rule, where i = 0.

Relational diagrams make the structure of propositions and relations especially clear. There
is always a main relation, corresponding to the outermost greyed out box: a metaphysically
simple relation, analogous to the main connective of a propositional formula, which may have
some of its holes filled with other structured entities, possibly contributing further holes. These
entities may be called the immediate constituents of the proposition. These further entities, if
they are not individuals, will similarly have a main relation and immediate constituents, which
appear nested in the overall diagram, and so on.

19Thus we obtain a general correspondence between relational diagrams and relations of the same type. The
correspondence clearly depends on the simple relations we have associated with each simple relational diagram.
Rule 4 extends this association to complex relational diagrams and complex relations, but to do this we have
need to pick one of the two ways to align the ordering that orders holes and constituents in relations with the
left-to-right ordering in our pictorial representations. Thus each relational diagram corresponds to a unique
relation of matching type relative to a (type preserving) assignment of simple relations to simple relational
diagrams, and a choice of aligning the propositional constituent ordering with the left-right order on diagrams.

20Thus, for instance, a simple entity of of type ((e — t) — t) — ¢ will contain a hole of shape (e — t) — t
(see the image associated with 3 above, but with grey and white inverted), and this hole itself contains a hole
of shape e. Only the former is a hole of the entire entity, since it is a unary property.



It’s instructive also to consider diagrams that cannot be constructed from the above rules.
For instance, it simply isn’t possible to construct a diagram that doesn’t have any constituents,
or is made entirely from holes, as illustrated below.

O O

Similarly, it’s impossible to construct a diagram that doesn’t have a main relation — for
instance, one cannot have a hole where the main relation ought to be, as illustrated in the
first diagram below. Since entities are constructed by plugging things into holes, to construct
such an entity, one would have to start with the illegitimate entity made entirely out of holes
depicted above and fill the two individual holes with a and b respectively. The second diagram
has a main relation, but given its hole has shape e — ¢, there should not be a label on the
innermost grey circle.

3
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This concludes our informal description of relational diagrams. There is clearly room for more
precision in the description of these entities; later we will present a more conventional logical
notation for denoting structured entities and establish a many-one correspondence between
them and relational diagrams that clears up any remaining vagueness. However, despite being
less amenable to the usual methods of the philosophical logician, the relational diagrams enjoy
one advantage over standard logical notations: according to the structured view under con-
sideration, there is a one-to-one correspondence between relational diagrams and relations?!,
whereas there will in general be many different ways to express the same entity in logical no-
tation. Intuitively, a logical expression may be thought of as a set of instructions telling you
how to build a structured entity, and two instructions can differ over the order in which it tells
you to put pieces together whilst still yielding the same result (just as, say, different lego in-
structions can produce the same lego construction). This represents a fundamental divergence
between the present pictorial theory and structured theories of propositions modeled on lan-
guage: the structure of reality is not directly reflected by the structure of linguistic expressions,
but only by the linguistic expressions up to a notion of equivalence. Linguistic representations
will thus tend to obscure the true structure of reality. We illustrate this point next by giving
a straightforward diagnosis of the ‘Russell-Myhill paradox’.

3 The Russell-Myhill Paradox: A Preliminary Diagnosis

Several philosophers have recently argued that the theory of structured propositions is untenable
on the grounds that it is inconsistent. For example, Dorr (2016) points out that the following
principle, formulated in a standard higher-order language with ‘A-terms’ (to be described in
the next section), is inconsistent with very minimal logical assumptions:

21Relative to a way of associating simple diagrams to simple relations of matching type, and a choice about
which way we associate constituent order with the left-to-right ordering on diagrams. See footnote 19.
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Predicate Argument Structure Fa=Gb— F=GAa=5b

Here F and G can be any predicative terms (possibly open) expressing relations with type
o — 7 and the arguments ¢ and b must express entities with type .22 Similar arguments
against structured principles are put forward in Hodes (2015), Uzquiano (2015), and Goodman
(2017); all these arguments trace back to Russell (1937) appendix B.

According to many theories of structured propositions, propositions have a quasi-syntactic
structure, with the structure of properties and propositions being modeled on the structure of
predicates and sentences of a language. Predicate Argument Structure is a commitment of the
most straightforward implementation of that idea: two subject-predicate sentences ‘Fa’ and
‘GL’ cannot be the very same sentence unless the predicates ‘F’ and ‘G’, and the names ‘@’
and ‘b’ are the same. However we have already said enough to see that Predicate Argument
Structure is not a commitment of our pictorial theory of structured propositions. Consider
the proposition O(—A). We have two distinct ways of building this proposition. We can plug
the proposition A into negation’s single hole, and then plug the resulting proposition, —A,
into necessity’s single hole. Alternatively we can put O and — together to get the structured
operator O—, obtained by plugging —’s diagram into the only hole in O’s diagram leaving a
diagram with a single hole. And we can then plug the proposition A into that final hole. Either
way we get the same result:

D i~
@ &

But Predicate Argument Structure says that there’s only one way to make a proposition by
applying an operator to a proposition. It entails the following pair of identities: The composite
operator (O-) is identical to O, and A is identical to —A. Neither identity holds on the
present pictorial theory of structured propositions (the latter is simply inconsistent). So this
structuralist should not accept Predicate Argument Structure.

There are other routes to paradox, for instance in Bacon (2020) the following weaker prin-
ciple is considered:?3

Predicate Structure Fla=Ga — F =G

Again, understanding this as schematic in both terms F,G : ¢ — 7 and «a : 0, and in the types
o and 7. This principle does not imply the aforementioned identities, since in this principle
the argument of the two predications in the antecedent, Fla and Ga, are the same, so it is not
susceptible to our counterexample to Predicate Argument Structure for there we exploited the
fact that O—-A could be decomposed into an application in two different different ways with —
appearing as a consistuent of the predicate and of the argument respectively. Unfortunately
Predicate Structure is also inconsistent by a Russell-Myhill style argument.

But the structuralist also has independently rejected Predicate Structure. I can make the
proposition that Alice loves Alice in two ways: I can plug Alice into the first argument hole,
yielding loves Alice, and apply the resulting unary property to Alice. Or I can plug Alice into
the second argument hole, yield Alice loves, and apply the resulting unary property to Alice.
Thus:

221n the systems in which this schema is formulated one may infer universal generalizations like VXY Vry( Xz =
Yy — X =Y Az = y), quantifying into both predicative position ¢ — 7 as well as the position of the argument
of type o.

23There it is called simply Structure, but this is in conflict with Dorr’s naming conventions.
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But we should not conclude that the unary properties expressed by loves Alice and Alice loves
are identical: perhaps Alice loves people who don’t love her back, or there are people she doesn’t
love who love her. Moreover, the diagrams for both relations are clearly different, having an
empty hole in different positions.?*

So, already, we are in a position to see that the present theory has the means to resist
Russell-Myhill style reasoning in a principled manner. This is not the end of the matter, of
course: we have not said enough to even raise the question of consistency of the present theory.
First we will describe the type of system that Dorr, Goodman and others use to formulate their
inconsistency results; it is based on Church and Curry’s work on type theory, and we will see
that it encodes a different, more liberal theory of propositions and relations which the present
structuralist rejects. Once this is done we will be able to give a more fine-grained analysis of
the inconsistency results of Dorr (2016) and Goodman (2017), which are formulated in these
languages.

4 Church’s system of higher-order logic

There is a now standard formalism for representing properties and relations in a typed language.
The A-calculus, originally developed by Church, is formulated in terms of variables and a
syncategorematic device, A, for forming expressions denoting properties and relations. Less
widely used, but of equal expressive power, is the combinatory calculus of Curry (1930), which
eschews variables altogether and achieves the effect of Church’s A by other means. Underpinning
both of these formalisms, however, is a substantive metaphysics of properties and relations: a
metaphysics, I shall argue, that the present structuralist does not accept. In this section I
will outline Church’s framework. In the next I will show that this framework, and the related
framework of Curry, are simply not suitable for theorizing about structured propositions: many
of the expressions that appear in these formalisms are meaningless by the pictorial structuralist’s
lights — they do not correspond to properties or relations.

Church’s A-calculus is a typed language: it is comprised of a collection of expressions each
possessing one of the types described in section 2. The basic expressions consist of a collection
of logical and non-logical constants, and then there are various rules telling us how to create
complex terms. These complex terms are constructed from the constants using variables and the
device A, to be explained detail below. In an interpreted language of this kind, each constant
will have an entity of the corresponding type as its meaning — a sentence a proposition, a
predicate a property, and so on. And, provided reality cooperates, each way of constructing
complex terms from simpler terms corresponds to a way of putting together entities, so that
every expression of the A-calculus is meaningful. The rules for creating complex expressions
from simpler ones have been broken down into a collection of primitive rules described in table
1.25 These rules deliver statements of the form ‘the term M of type 7 may be made from free

24 Another variant of Structure, suggested to me by Lavinia Piccollo, replaces Dorr’s conjunction with a
biconditional:

Fa=Gb— (F=G<+a=0b)
While this principle is compatible with the two decompositions of O(—p), it similarly implies that loves Alice
and Alice loves are identical.

25We use I" and A to stand for arbitrary sequences of type assignments, 1 : 01, ..., Zn, : 0n, Where x1...z, are a
finite sequence of pairwise distinct variables. To preserve the pairwise distinctness required of type assignments,
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Table 1: Natural deduction for Curry typing

variables x1...x, of types 01...0,’. Statements of this form will be called type assertions and
will be abbreviated x; : 01, ...,%n : 05 - M : 7.26

A complete understanding of the finer mechanics of this system will not be that important
to the reader. The following examples illustrate the primary function of each rule, by showing
what further terms each rule allows one to create from a given binary relation R : e — e — ¢,
interpreted as loves.

1. The rule Exchange plays a crucial role in forming ‘converses’ like Azy.Ryxr — is loved by
— in which A binds variables in a different order to the order in which they appear in the
body of the term.?”

2. The rule Contraction allows one to form reflexivized properties like Ax.Rxx — loves
oneself — where )\ binds a variable that appears multiple times in the body of the term.?®

3. The rule Weakening allows one to form vacuous properties like Ax. Rab — being an x such
that John loves Mary — where )\ abstracts a variable that doesn’t appear in the body of
the term.2’

4. The rule Identity allows one to form ‘combinators’: terms made entirely out of bound
variables and A — for instance Ap.p. Combined with Exchange, Contraction or Weakening
respectively one can form combinators corresponding to each of the above examples:
C = XAy zXzy, W = AX ) \y.Xyy, and K = ApA\y.p, where X : e - e — t, p : t,

the rule Application is thus understood so as to only apply when I' and A have no variables in common,
Weakening when x : 0 does not appear in I', and Contraction when z : o does not appear in I" or A.

26This system for typing terms originated with Curry in the 1930s, and following Milner (1978) is often used
by computer scientists who want more flexibility in assigning types to variables. Our variant does not have this
flexibility: we have built the types into the variables: for us z1 : 01, ...,Zn : 0 is only a legitimate type context
if those variables in fact have those types. This means two things: (i) we do not have to annotate variables
when we A-abstract, and (ii) an unannotated A-term has at most one type. The reasons we are using Curry’s
system, as opposed to Church’s, is that it will later make available clean ways to restrict the legitimate A-terms.

27 An instance of Identity and Constants, z : e x:eand - R:e — e —t, lets youinfer z : e - Rz : e — t
using Application. Using this and another instance of Identity (y : e -y : €) we can infer z : e,y : e Ray : t
again by Application. Exchange lets you move to y : e,z : e - Ry : t, and two applications of Abstraction let
you get to - AyAz.Rxy : e — e — t.

28 Assuming we have already derived z : e,y : e - Ray : t as above, Contraction lets you infer z : e - Rzz : t,
and an application of Abstraction let’s you get to - Az.Rzz : e — t.

29 Assuming we have derived - Rab : t using Application and Constants, Weakening lets us infer z : e - Rab : t,
and an application of Abstraction let’s you get to - Az.Rab: e — t.
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Y,z : e. Informally, C' takes a relation and outputs its converse, W takes a relation and
outputs its reflexization, and K takes a proposition and outputs the vacuous property is
such that p. (There are variants of C, W and K for other types as well.)

5. The rules of Abstraction and Application let you introduce As into terms and apply terms
to one another, and are essential if we are to construct any interesting terms involving A.
The reader should consult the above footnotes to get a feel for the role they play in the
construction of the terms mentioned.

Within this language one can state various theories of properties and relations. In order
to do this we need some logical apparatus: we assume that among the logical constants we
have at least the classical conditional (a binary connective, — of type ¢ — t — t), and for
each type o a quantifier V,, of type (¢ — t) — ¢t which expresses generality into the position of
type o, just as the first-order quantifier express generality in the position of a name. Applying
V, to a predicate F' : ¢ — t forms a sentence V,F' of type t, saying that F' is universally
satisfied. A minimal theory must at least include sentences that follow from the classical
propositional and quantificational principles, understanding the latter to encompass the higher-
order as well as the first-order quantifiers: I put these in a footnote.?’ (In this axiomatization,
and henceforth, I employ several standard abbreviations: I will write MyM; M,... M, instead of
(...((MoM;1)Ms)...M,,), A — B instead of — AB and I will suppress As appearing immediately
after quantifiers, writing V,z.A instead of V,Az.A. The remaining truth functional connectives
can be introduced by definition, e.g. V;_;V; for L, Ap.(p — L) for = and so on. Significantly, it
is possible to define an identity operation, =, at each type by the definition Azy.V,_(Xx —
Xy).)

The above axioms say very little about Church’s special device for denoting properties and
relations: A. Further axioms governing A, then, must be added that pin down the intended
meaning of A\. The primary purpose of A, of course, is to allow one to form complex predications.
For instance, given predicates F,G : e — t, meaning is wise and is old respectively, one can
construct, using these rules the complex predicate Ax.(Fz A Gzx) : e — t, meaning is wise and
old. The principle S essentially ensures that our complex predicates involving As behave as
expected: for instance, it will tell us that A\x.(Fx A Gx)a is the same as Fla A Ga — for Socrates
to be wise and old just is for Socrates to be wise and Socrates to be old. The principle n lets
you eliminate inessential uses of A-abstraction: Az.Fx and F are the same — i.e. to be an x
such that x is wise just is to be wise.

To be more precise, a pair of terms of the form (Az.M)N and M[N/z] are said to be
immediately B-equivalent, with the caveat that N is free for 2 in M.3! Two terms of the
form M and Az.Mzx are immediately ) equivalent, when z isn’t free in M. A minimal theory,
which I shall simply call H, adds the further principles 8 and 7 to the above axioms, capturing
the idea that immediate § and n-equivalents are synonymous and thus intersubstitutable salve
veritate.32.

30

PC Every instance of a propositional tautology.
Ul Vo F — Fa
MP From A — B and A infer B
Gen From A — Fz infer A — VF, provided  doesn’t appear free in A
31Informally, this qualification simply means that N doesn’t contain any free variables that get bound once
N is replaced with . More precise definitions may be found, e.g., in Hindley and Seldin (2008).

32Note that these principles license the substitution of immediate n and -equivalents even in the scope of As
binding variables appearing free in the terms being substituted.
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B A« A’ where A’ is obtained from A by substituting an occurence of (Az.M)N with
M|[N/x] or conversely, provided N is free for x in M.

n A< A’ where A’ is obtained from A by substituting an occurrence of M with A\z.Mx or
conversely, provided x isn’t free in M.

A is a useful technical device, but unlike other useful philosophical notions — such as
knowledge, disjunction, chance, and so on — it is not obviously something we have pretheoretic
grip on. We appear to learn its meaning solely through the logical principles that relate it to
antecedently understood expressions that don’t involve it. A nice feature of g and 7 is that
they pin down the meaning of the A-terms uniquely.?® Suppose that )\ is another abstraction
device which satisfies the analogue of 8, which we’ll call 5: (Mz.M)N may be substituted for
M|[N/z] in any sentence salve veritate. Given 8’ and 7, one can derive the identity of \'-terms
and A-terms. In particular, when N =z, M[z/x] = M, so §’ tells us that (Nx.M)z and M
are intersubstitutable. Thus we can infer from A\z.M = Azx.M that:

Az.(Nae. M)z = Aa.M
Given 7 (for \) we can substitute N'x.M for Az.(A'z.M)z in the above giving us:
Ne.M = e.M

Our principles thus pin down the meaning of A-terms entirely, given the background theory H.
(A completely parallel argument establishes the same conclusion from 8 and 7’ instead of S’
and 7.3%)

From the self-identity statements (A\x.M)N = (Ax.M)N and \x.Mx = Az.Mz you can
derive from f and 7 the following two identities:

8= (Az.M)N =, M[N/z] provided N is free for x in M.
n= Ax.Mx =,_,, M provided z isn’t free in M.

These will be useful subsequently.

5 The metaphysics of Church’s system

It is implicit in Church’s formalism that if M is a closed expression built from constants that
denote properties and relations — i.e. an expression built from denoting constants, bound
variables and A — then M also denotes a property, relation, or what have you. These ontolog-
ical commitments correspond to theorems of our minimal Churchian theory of properties and
relations H. E.g. one can formalise and prove that for every binary relation, R, there is another
unary property of Ring oneself, \z.Rxx, that for every pair of properties F' and G, there is also
the property of being F' and G, \x.(Fz A Gz), and so on. It also tells us how these complex
properties and relations behave, by entailing various identities: the proposition that a Rs itself
is the proposition that a Rs a, (Ax.Rzz)a = Raa, the proposition that a is F' and G is the
proposition that a is F and a is G, Ax.(Fz A Gx)a = Fa A Ga)), and so on. Spare as it is, the
Churchian theory of properties and relations makes some substantive assertions.

Evidently this is a formalism that heavily involves bound variables. Now, here is a long-
standing challenge for classical theories of structured propositions in which the structure of
reality is modeled on the structure of language:

33My argument here is inspired by similar arguments found in Harris (1982), that the axioms for the quantifiers
and connective pin their meanings uniquely. Dorr (2014) contains further discussion of Harris’s argument for
the logical connectives.

34 A very similar argument establishes the more general intersubstitutivity of X’ for A salve veritate.
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What is the structure of propositions corresponding to sentences involving bound vari-
ables?

For instance, a textbook first-order formalization of a non-quantified sentence, like Alice loves
Bob, and a quantified one, like everyone loves someone, might be Rab and Y3y Rxy respectively.
The structure of the former proposition is perfectly reflected by the structure of the sentence
that expresses it, and so some structured proposition theorists have thought to count bound
variables among the constituents of the structured proposition expressed by the latter.?®

For the representational structuralist, this is a contentious but not implausible assumption
to make. After all, many of the most convenient representations of reality involve bound
variables. But for the metaphysical structuralist, this is a quite radical thesis. It implies, for
instance, that there is a distinction in reality — not just in their representations — between
the following properties:

1. is an x such that z is old and x is wise (i.e. \x.Fx A Gx)
2. is a y such that y is old and y is wise (i.e. A\y.Fy A Gy)

For the variable x is a constituent of the first property, but not the second.

Bound variables solve a technical problem: they allow us to form complex predicates and
to express quantificational claims. If we simply removed them from Church’s formalism we
wouldn’t have enough representations around to express all the things we want to be able to
express. The structure of reality itself, however, need not answer to our expressive needs. Some
ways of generating enough representations of things we might need to express also generate
more than we need: the distinguishing features of the proliferated representations are merely
representational artefacts, that do not reflect anything in reality. Indeed, one could argue the
pervasiveness of bound variables in philosophy and linguistics is an accident in the history
of logic. Other solutions to the expressive problem are possible which do not overgenerate
representations to the same degree. De Bruijn (1972) developed a system for introducing
bound variables in which it is impossible to form distinct predicates like 1 and 2 above, and
there are entirely variable free approaches to type theory, two of which we will consider shortly
(one due to Curry, another novel to this theory).

Apart from the strong sense that bound variables are a representational artefact, the radical
structured view is inconsistent with Church’s principle 5. For if the properties 1 and 2 are
distinct then so are the propositions A\z.(Fz A Gz)a and Ay.(F'y A Gy)a, yet by 8 they are both
identical to Fa A Ga.

Luckily, one does not need to accept the radically fine-grained theory of properties and
relations in order to adopt the Churchian representations of them. The mapping from Church’s
representations of properties and relations need not be one-one: two representations differing
only over which bound variables are employed can pick out the same property or relation. A
more general principle, that predicts all this and more, asserts that that bound variables do
not, contribute constituents to the properties they help denote:

Moderate Structuralism An expression built from a closed expression M using only bound
variables and A denotes an entity with the same simple constituents (in kind and number
of occurrences) as the entity M denotes.

Thus for instance, R, Azy.Rzy, Azw.Rzw, Ax.Rrx, \ry.Ryz, and so on, will all denote entities
with the same simple constituents. (The parenthetical about number is there to make sure

35This is clear in, for instance, King (1996), although note he repudiates this aspect of the view in King
(2007), p41.
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that we can register the difference between the number of constituent occurrences in things like
Rabb and Raab. If we wanted to be more pedantic, we could say that two entities have the
same simple constituents only when the multiset of their simple constituent occurrences is the
same.)

Many instances of Moderate Structuralism are, in fact, a consequence of Church’s principle
8 and some informal principles about constituent count.

Constituent Count The number of times a simple entity occurs as a constituent in M N is
the sum of the number of occurrences in M and in N respectively.

Why the restriction to simple entities? Assuming the well-foundedness of constituenthood, Fa
is an (improper) constituent of Fa, but is not a constituent of F' or a. By contrast, a simple
entity cannot be a constituent of Fa without being a constituent of F' or of a, and this is a
straightforward consequence of our principle.

Constituent Count tells us that the constituent occurrences of simple entities in (Azy.Ryx)ab
is the sum of the constituent occurrences in Azy.Ryx, a and b. By 8, (Azy.Ryxz)ab = Rba,
whose simple constituent occurrences may be calculated by summing the simple constituent
occurrences in R, b and a (again, by Constituent Count). The only way these occurrences of
simple constituents can be the same is if Azy. Ryx has the same occurrences of simple entities
as R. Similar justifications are possible for the other instances of Moderate Structuralism
discussed above.

We are now in a position to note two ways in which Churchian theories of properties and
relations differ from the one we have outlined in section 2. There are roughly two reasons this
is. Once we have conceded that bound variables do not contribute constituents, Churchian
theories posit (i) the existence of entities that do not have any constituents at all, and (ii)
entities that have no well-defined notion of constituent occurrence count and order, and no
well-defined main relation. (i) and (ii) thus mark two ways in which Church’s framework is
ill-suited for the job of formulating a theory of structured propositions guided by the relational
diagrams of section 2.36

Let’s start with (i). Church’s theory allows one to construct terms that are entirely con-
structed from bound variables and A. Terms like this are called combinators, and examples
include Ap.p, and the C, W and K combinators constructed above (AXAyAz. X zy, AX \y. X yy,
and Apz.p). The idea that combinators are constituentless is suggested directly by our com-
mitment to Moderate Structuralism: if bound variables do not contribute constituents then
terms made entirely out of bound variables and A must not contain any constituents. There
is also an independent argument for this from § and Constituent Count. For instance, given
B, (Ap.p) maps every proposition to itself, and so Ap.p cannot add any occurrences of simple
constituents to the proposition it is applied to. It follows that Ap.p itself must not have any
simple constituents (and so cannot be simple itself, either).3” Similarly, Constituent Count

360f course, it is conceivable that there are more liberal structured views that allow for constituentless entities,
or that employ revised notions of constituent occurrence count and order. The question of what exactly counts
as a ‘structured theory’ doesn’t seem like a fruitful one to me: There is a vast array of possibilities that seem
worthy of investigation here, but the structured theory of section 2 is reasonably concrete, and strikes me as
being of sufficient interest to justify the search for alternatives to Church’s framework.

37There is a caveat in this argument: what if every proposition @Q has infinitely many constituent occurrences
of Ap.p in it. Then the constituent occurrences of Ap.p in (Ap.p)@ and @ could be the same — infinite —
in accordance with Constituent Count. (Appealing to constituent order similarly doesn’t help, for one could
similarly maintain that every proposition begins with an w-sequence of Ap.p constituent occurrences; adding
another Ap.p to the beginning of an w-sequence will plausibly not make a difference to the proposition.) The
gap can be filled by making the further assumption that propositions are well-founded, or even the stronger
assumption that propositions have finitely many constituent occurrences, both of which seem like reasonable
assumptions.
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tells us that (AX AyAz.X zy)Rab has the same number of occurrences of simple constituents as
(AXAyAz.Xzy), R, a and b together, and also tells us that Rba has the simple constituents ap-
pearing in R, a and b. By 8, (AXAyAz.Xzy)Rab = Rba, and so AX A\yAz.X zy must contribute
no occurrences of simple constituents, in order for the number of constituent occurrences to
add up.

Now I think there is an important choicepoint in a theory of properties and relations that
trades in notions like ‘constituenthood’ over whether it should admit completely constituentless
properties and relations or not. Indeed, the thesis that there are constituentless entities is
entirely consistent, and there is a lot of unexplored territory to be mapped out here.®® I do
not think it is productive to quibble over what counts as a ‘structured theory’, nonetheless the
idea of a constituentless entity is certainly at odds with the naive structured picture of entities
being built from simple constituents that we have attempted to capture pictorially in section
2.

Our diagrammatic representation of structured entities is suggestive in this respect: there
are no ‘spectral’ entities, that consist entirely of holes (i.e. that have no grey in them what-
soever). For instance, the combinators AX AyAz. Xyz and Ap.p would naturally be depicted in
the following ways:

O O

As we noted, neither of these are relational diagrams. I have rendered the relational diagrams
with borders for visual clarity, but we could equally have rendered them without. Doing so
dramatizes the absurdity of an operation that is entirely made of holes, given the structured
picture: one would simply have empty space.

Which of our typing rules are to blame for the construction of combinators? Since a com-
binator is made of entirely of As and variables, every way of building a combinator will involve
at least the rules Identity and Abstraction — the only rules that introduce variables and As
respectively. As a limiting case of this, F Ap.p follows by Abstraction from the p : t - p : ¢
instance of Identity. Thus we could avoid terms denoting constituentless entities by restricting
these rules somehow. We will later consider a system that keeps Abstraction but replaces Iden-
tity with something else. Related to the rejection of constituentless entities in our structured
picture is the rejection of entities like AX.Xab that have no main relation, also depicted in
section 2:

®@ O

the same sorts of rules that allow us to build combinators allow us to build terms like AX.Xab
that correspond to illegitimate relational diagrams like the above. These terms have bound
variables in ‘predicating position’, where the variable appears applied to some other term (e.g.
Xa where X : e — t), as opposed to ‘argument position’ where the variable appears as the

38My own attempt at this can be found in Bacon (2019), Bacon (2020); see especially the discussion of pure
entities. See also the related notion of logicality in Dorr (2016).
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argument to some outer term (e.g. 3.X).3

According to the present structured theory, every structured proposition can be decom-
posed into a unique main, or outermost relation, whose argument places have been filled with
entities of the appropriate types—the proposition’s immediate constituents. These arguments
are either simple or can themselves be decomposed into an outermost relation with immediate
constituents; this decomposition continues until we eventually reach simple entities which have
no immediate constituents. (I use the word ‘relation’ here broadly so as to include relations
between entities of non-e types, such as connectives.) This unique decomposition idea is widely
assumed in the literature on structured propositions; for quasi-syntactic views it corresponds
to a metaphysical analogue of unique readability for sentences.

But Church’s theory of properties and relations is inconsistent with this idea. Firstly, it
posits the existence of converses. S is a converse of the relation R iff for any individuals a
and b, Rab is the very same proposition as Sba. It is easily seen, using (3, that Azxy.Ryx—
R° for short—is a converse of R: Rab =; R°ba.*® The existence of converses contradicts the
unique decomposition idea: a single proposition Rab — that John loves Mary say — can be
decomposed as R applied a and then b, or a different relation, the converse of R, R®, applied to
b and then a (Mary is loved by John). It also posits reflexizations. A reflexization of a binary
relation R is a unary property F such that for any a, Fa is the very same proposition as Raa.
It’s easy to see that Axz.Rxx—R"™ for short—is a reflexization of R using 8: R¥a = Raa. But
reflexizations also contradict the idea of a unique decomposition of a relational proposition:
John loves John can be decomposed with the binary relation R with a put in both argument
places, Raa, or as the unary property R“ applied to a, R”a. Similar problems arise with
vacuous A-abstraction: a unary predication Fa, say John is tall, might be thought to have a
unique property, in this case being tall, as the main relation of the proposition. Yet it also has
a decomposition as (Az.Fa)b, where b is an arbitrary individual and Az.Fa (being such that
John is tall) is the main relation.

These different decompositions also apparently contradict the naive notion of order and
number as it applies to constituent occurrences. a and b seem to occur in different orders in
the two decompositions of John loves Mary, Rab and Rba. And a seems to occur respectively
once and twice in the two decompositions of John loves John, (Az.Rxx)a and Raa (John loves
himself and John loves John). With vacuous A-abstraction any individual whatsoever can
occur in some decomposition of any proposition p (for instance, snow is white can also be
decomposed as the unary property of being such that snow is white applied to John).

There has been much suspicion in metaphysics concerning the existence of converse relations
that is quite independent of our particular theory, so it is an advantage that the theory does not
posit them (see Williamson (1985), Fine (2000), Dorr (2004)). It should be stressed, however,
that in denying the existence of converses the structuralist isn’t rejecting the intelligibility of
the active and passive voice as in, for instance, the boy kicked the ball and the ball was kicked
by the boy. The mere existence of this grammatical distinction is not a decisive reason to think
there is a corresponding distinction in reality. As argued in Williamson (1985), for instance,
perhaps these are just two ways of expressing the same proposition. Similarly, the active and
passive versions of the transitive verb, kicked and was kicked by, may simply be two different
ways of picking out a single relation, whilst being subject to special grammatical rules about
which order the arguments must appear in the surface structure of a sentence.*! So it is possible

39Note that it’s possible that a predicate variable be in argument position, as in 3.X. Thus bound predicate
variables — i.e. a bound variable with a predicate type (e.g e — t) — are fine, it is only bound variables in
predicating position that do not correspond to relational diagrams.

40Proof: using B twice, (AzAy.Ryz)ba = (\y.Ryb)a = Rab.

41 There is another way to deny the existence of converses that is consistent with the present theory: one could
maintain that kicked and was kicked by express distinct simple relations, R and S. Rab and Sba should not be
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to maintain that converses exist in language without existing in reality.*? Similar strategies
can be applied to English expressions like loves oneself and is such that John is tall that on
the surface appear to be referring to reflexizations and vacuous properties.

The rejection of converse relations is straightforwardly reflected in our relational diagrams.
It is simply impossible to draw a diagram corresponding to Azy.Ryz. For, in our diagrams holes
have no distinguishing features apart from their positions. It simply isn’t possible to switch the
positions of the two holes represented in our diagram R to produce a new diagram. The culprit
here is the rule Exchange, which allows one to abstract on variables in a term M in a different
order than those variables appear in the body of M. Terms in which the variables are abstracted
in the same order as they appear in the body, like Azyzw.(Rxy A Szw) receive straightforward
diagrammatic representations, whereas putative relations like Azyzw.(Rzy A Swz), in which
they are not, do not. If we wanted to reject terms like this, then one could simply remove the
rule of Exchange from our typing rules.

Similar things can be said about reflexizations and vacuous properties. There are no re-
lational diagrams for Az.Rzxx and Ax.Fa. To represent the former we would need to take a
relational diagram with two holes, like our diagram for R above, and merge the two holes into
one. We similarly cannot represent the latter property: it is a unary property so it must have
a hole somewhere. But there is nowhere for the hole to be, given that F's only hole is already
occupied by a. Just as the rule of Exchange lets us build expressions for converses, the rules
of Contraction and Weakening let us build expressions for reflexizations and vacuous proper-
ties respectively. A structuralist might therefore wish to remove these rules from their typing
system if they wanted generate only terms that could be represented by relational diagrams.

It is worth remarking that in rejecting these features of Church’s theory, we are also rejecting
the legitimacy of many common operations on properties and relations. For instance, if you have
two properties, F' and G, one might also postulate the existence of the property conjunction
of them, Az.(Fx A Gz). But this is expressed by a term in which A binds a variable occurring
twice. The closest we get to property conjunction is the following:

o) (o)

But this has two holes, and is thus a binary relation, represented by the Church term Azy.(Faz A
Gvy), sometimes called Quinean conjunction.

One might be tempted to diagnose the forgoing problems as being inherently linked to the
use of A and bound variables in our representations of properties and relations. Curry (1930),
drawing on Schénfinkel (1924), introduced a formulation of type theory that does not involve
variables at all: the need for principles like Moderate Structuralism and the puzzles surrounding
the status of bound variables as constituents, simply do not arise in this framework. Like
Church, one has logical and non-logical constants of various types, and a rule for applying a
term M of type o — 7 to another term N of type o to form (MN) of type 7. To do the jobs
that A normally deals with, Curry instead takes as primitive expressions that correspond to

identified, since they differ both in the order of their individual constituents and in their main relations, and so
behave unlike converses. However, as Bader (2021) points out, this sort of theory seems to posit unexplained
necessary connections between simple relations — namely O(Rab <> Sba).

42The reader might wonder whether one could find an interpretation of the Churchian theory in which con-
verses exist only ‘in language’. It is hard to see how this is possible in light of the following theorem of the
Churchian theory: for every asymmetric relation there exists another relation distinct from it that is its converse
VemsenstX (Fry(Xzy A ~Xyz) = FY (Y #emsest X AY = X€).
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the combinators in Church’s theory. In Church’s theory, recall, a combinator is a closed term
involving only bound variables and A. Curry observed that one doesn’t need to take all the
combinators as primitive: one can take smaller sets of combinators as primitive, and obtain the
others by definition, much like one may define the truth functional connectives from disjunction
and negation. Here is one particularly sparse collection of combinators that will suffice: for each
type o, 7 and p one introduces a primitive combinator constants ¢, K°" and S°7?, denoting
respectively the operations Az.z, Axy.x and AXY 2. X2(Yz) denote in Church’s theory where
r,z:0y:7,X:0—=>T7—=p,andY 10 > T.

This reformulation, however is no more friendly to a theory of structured propositions than
Church’s is: indeed the theories can be shown, in certain technical senses, to be equivalent.*3
For in Curry’s combinatory logic, S, K and I are required to satisfy certain identities —
identities that would be required by g if instead of being taken as primitive they were take to
be defined in terms of As as above.** In order to satisfy these identities, combinators must be
constituentless for the same reason that they must be in Church’s theory. And the problematic
expressions A\zy.Ryz, \x.Fa and A\x.Rzrz have correlates in Curry’s system: K¢ (Fa), S¢'RI¢,
and S(K(SR))K. (I have omitted the relevant type superscripts from the final paraphrase
because they are long and not necessary for my point.) Given the aforementioned identities we
can derive correlates of the identities (Azy.Ryz)ab = Rba, (Ax.Rxx)a = Raa and (Az.Fa)b =
Fa that appeared in our earlier discussion.*® This concludes our case that the formalisms of
Church and Curry build in metaphysical assumptions that the structuralist does not accept.

Recent authors arguing against structured propositions, such as Dorr (2016) and Goodman
(2017), are well aware of these implications of the standard formalism. The moral we have drawn
from this discussion is that certain A-terms are not meaningful for the present structuralist,
and should be excised from their language. Dorr and Goodman, by contrast, freely use the
objectionable A-terms in their case against the structuralist: their concession to the structuralist
is that they do not assume that these A-terms satisfy 3, a crucial ingredient in some of the
problems we discussed above (for instance, we appealed to it in our proof that Azy.Ryzx is
a converse of R). Instead of assuming that (Axj...z,.M)N;y...N,, and M[Ny/x1...N,/x,] are
identical, as required by S (see = above), they merely require a biconditional:

Extensionsal 5= (Azj...x,.M)Ny..N,, &> M[Ny/z1...Np /2]

Similar weakenings of combinatory logic are also possible.

We will return to the arguments of Dorr and Goodman later. For now I will just remark
that that the structuralist has no reason to concede even Extensional 5=, when the relevant
instances involve A-terms they find unintelligible. Indeed, there are serious concerns about
adopting Church’s A-notation without also accepting his defining principles, 5 and 7. A is not
a device we were familiar with pretheoretically: it is a technical device, introduced by Church

43Some care is needed in setting this correspondence up. Unlike the axioms § and 75 for the A-terms, the
standard axioms governing combinatory terms do not pin down the combinatory terms uniquely, and as a result
the standard translations between the A-calculus and combinatory logic are not exact inverses of each other.
The correspondence is only exact when we strengthen combinatory logic with certain extensionality principles,
which also pin down the combinatory terms in the sense we demonstrated for A. See Hindley and Seldin (2008)
p84 for more details.

44Gpecifically, the following identities:

S S97PFGa = Fa(Ga)
K K%7ab=a
I Ia=a

45For instance, the first identity can be derived as follows: (S(K(SR))K)ab = (K(SR))a(Ka)b by S. Since
K(SR)a = SR, we may further reduce it to SR(Ka)b. And since (Ka)b = a, we finally get Rba.
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to do a certain technical job (one which can be done in several other ways). The only thing he
told us about the meaning of sentences involving his A-notation was that they satisfied these
two principles of § and 7. Luckily, as we showed earlier, those principles pin the meaning of
A-terms down uniquely. Without them, we have nothing to go on. Extensional 3, for instance,
falls dramatically short of pinning down their meanings: if it just happened that everyone
loves people who hate them back and hate people who love them back, then it’s consistent
with extensional 8 that Azy.Ryzr denotes the hating relation, even when R denotes the loving
relation.%® In short, Church’s A-terms were introduced in the context of particular metaphysical
assumptions, and don’t obviously have any meaning outside of that theory. (There is also an
apparent practical reason to keep all the problematic A-terms in the language, since they are
also employed in the Church-Curry formalism in the expression of complex quantificational
claims. But the presence of the A-terms alone does not solve this expressive challenge: without
[ it is far from clear that a sentence like 9,\z.A bears any relation to the claim we wanted to
express.?” We answer the expressive challenge in section 7.)

The corresponding weakening of Curry’s theory, in which certain identities between propo-
sitions are replaced with biconditionals, is also consistent with a highly structured picture.*®
For instance it is consistent in this weaker picture to suppose that the combinators I, K°" and
S?7P are metaphysically simple (as opposed to being constituentless, as 3 seems to require).
However, in addition to analogous worries about pinning down the meaning of combinators, the
resulting view is subject to even more problems. The structure of apparently simple statements
involving bound variables end up expressing long and complicated structured propositions ac-
cording to the combinatory view, due to the way that bound variables get translated away into
combinatorese.* More seriously, the standard ways of translating quantified statements into
combinatory logic do not even deliver the right truth value when the theory is weakened in this
way, which suggests this version of combinatory logic is particularly ill-suited to this form of
weakening.?°

46Nor does it help to prefix these principles with an operator denoting metaphysical necessity, since it seems
just as bad to interpret R to mean actually loves and Azxy.Ryx to mean actually hates.

4TExtensional 8= ensures that 3,Az.A has the right truth value, but this is hardly the same as solving the
expressive challenge, since one can always come up with ‘paraphrases’ that get truth values right as long as
there is a true and a false proposition.

48 The weakened principles governing S, K and I are respectively:

Extensional S Vzi...2,(S°"PFGax1...xn <> Fa(Ga)z1...xn)
Extensionsal K Vzi..2n(K°"ab < az1...2n)

Extensional I Vzi...2,(I°Rz1...2n <> R21...20n

49For instance you might expect everybody loves somebody, Vex3ey.Ryz, to denote a proposition that
only contain three constituents corresponding to the two quantifiers and R. However this sentence becomes
Ve(S(K3e)S(K(SR))K) under a standard translation from A languages to combinatorese. The complexity of
the resulting translation depends both on what combinators you take a primitive, and the translation, but the
result of applying these translations will invariably be more structured than the formulas they are paraphrasing.

50The problem arises when one wants to paraphrase statements that quantify into contexts that are sensitive
to structure. Consider the following sentence where we are quantifying into operator position in the context
of a belief operator, B: 3;:X.B(XA), or 3:tAX.B(XA), where B means I believe that and A means it’s
raining. We may suppose this is true because I believe that it’s not raining, so the existential is witnessed by
the negation operator (and the truth of this requires only extensional ). However a standard translation of
this quantified statement into combinatorese is 3¢+ (S(K B)(SI(KA))), which (given the background logic of
extensional K, I and S) is satisfied only if I believe a structured proposition of the form SI(KA)X for some
operator X. But I might believe it’s not raining without believing any proposition structured like this. This
above depended on a particular way of translating away bound variables in combinatorese, but when S, K and
I are the only primitive combinators available all translations will disturb the structure of the open sentence in
the scope of the belief operator.
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6 The Structural Calculus

Let’s return to our structuralist metaphors: there are some basic building blocks — simple

properties, relations and individuals — and complex propositions, properties and relations can

be made by combining these basic building blocks in various ways. The theories of Church and

Curry posit ways of building new things from old that simply outstrip the sorts of building

operations that are legitimate by the lights of the present structuralist. For instance, we have

denied that one can build a unary property, like Az.Rxx, from a simple binary relation R alone.
Putting it like this makes the following questions all the more urgent:

Which ways of building new entities from old are legitimate by structuralist lights?

Which ways of combining typed expressions with As (or combinators) do correspond to
genuine ways of combining entities?

With satisfactory answers to these questions we will be in a position to make our theory of
structured propositions more precise. But also we use this discussion to motivate a more
perspicuous notation — the structural calculus — in which you simply cannot form expressions
which do not denote by structuralist lights. Indeed, the syntactic operations by which one can
combine two expressions will correspond exactly to the possible ways of combining two entities
that make a structured entity. The system will also be related to a fragment of Church’s system
in which one can accept 8 and 7 in full generality.

The most general way of combining entities according to this structuralist is by an operation
that has application and composition as special cases; as a result I will call in ‘complication’.
Let’s start with application. Given an n-ary relation, R, we can plug an individual into any of
its argument slots. This is represented by simply filling the corresponding hole in its relational
diagram by a relational diagram for an individual. In Church’s notation, we notated the result
of filling the first (leftmost in our pictorial representation) hole of a relation R with a as (Ra).
In order to represent filling Rs second slot, third slot, fourth slot, and so on, with a in Church’s
language we need to start using the A-notation: they are respectively Ax.Rza, Azy.Rzya,
Axyz.Rxyza, and so on. Instead of introducing As we will generalize the simple notation of
application. It will be convenient to number the holes in a relation from 0: we shall write (Ra)$
to denote the result of plugging a into Rs Oth slot (i.e. (Ra) in Church’s notation), and (Ra)?
for the result of plugging a into Rs 1st slot, (Ra)9 for the 2nd slot, and so on. (For the moment,
the reader should ignore the superscripts.)

This can be generalized to any relations between entities of any type: this general form of
application corresponds to the result of plugging a hole in a relational diagram with another
diagram that fits it perfectly, leaving no holes behind. We also said that one can slot a relational
diagram into a hole leaving one more holes behind, thus contributing new holes to the result of
the combination. This is composition. Take, for example, the diagram for — of type t — t. It
has one proposition shaped hole. Suppose that, instead of filling that hole with a proposition,
we filled it with a unary property F : e — t (say, being tall). Since this diagram has a single
individual shaped hole, the result would have a hole remaining (see the diagram on the left
below). This is the composition of not and being tall: being not tall. If we instead filled
negation’s hole with a binary relation, loves, we would get their composition doesn’t love, which
would leave two individual shaped holes behind. See the diagram on the right below.

~

23

~




We can of course compose negation with ternary and higher-arity relations in exactly the same
way. In Church’s notation we would represent these compositions using A-terms: Az.—(Fx),
Azy.—(Rzy), Azyz.~(Szyz), and so on. Instead we will write (=F){, (=R)3, (=5)3, and so on.
The superscript indicates that we are leaving one, two or three holes behind, and the subscript
still indicates that we are performing this in the Oth slot of =. Of course, whatever we can do
in the Oth slot, we can also do in the 1st, 2nd, 3rd slots. For instance, given a binary connective
B, we can compose it with the unary property F' in the 1st slot to obtain (BF)i:

L JEO

So in general we can combine two relations, M and N, provided they have the right number
and type of holes, and create another entity (M N)" by plugging N into the mth hole of M,
thereby adding Ns n holes where Ms mth hole used to be. Clearly this corresponds exactly to
the rule for creating complex relational diagrams from simpler ones in section 2:5!

Complication Given M : 01 — ... = o1 — T and N @ p1 — ...pp — Opma1 We write
(MN) 01— ... = O — p1 —> ... = pp — 7 for the result of plugging N into the mth
hole in M, leaving all but the first n holes in Ns unfilled (see the rule for constructing
relational diagrams). In the A notation :

(MN) = AL T y1 Y- Mz T (Nyr.yn)

We can see that this subsumes our previous two operations by setting n or m to 0 respectively.
We will refer to brackets indexed by two Os as application brackets. We will follow our pre-
vious convention of associating application brackets to the left: thus MyM;...M} is short for
(MoM7)3M2)3...My)3. So, for instance, the Quinean conjunction of F' and G, Azy.((AFz)Gz)
described earlier, can now be represented by the term (AF)§G)1.

o) (o)

Notice that we have associated every term in our new language with a A-term: constants
can be mapped to themselves, and (M N)" can be associated with the corresponding A-term.
Formally the translation (—)* from our variable free calculus to the A-calculus may be given as
follows:

e (c)* = ¢ when c is a constant.

e (MN)")* = Az1..2mY1.-Yn- M z1...0 (N y1 ...y, ) where x1...7,, and y;...y, are the
first variables not appearing free in M and N respectively.

Just by observing the form of this second case, it’s also easy to see that the A-terms in the image
of this translation have none of the features of the A-terms we discussed above: (i) variables
always appear in the body of a term in the same order that they are abstracted, (ii) every

51See [ANONYMIZED)] for more details.
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I'M:oc—T1 I'M:o—1 AFN:o

—F,x:UI—Mx:T Concretion T, AF(MN):r Application
I z.obM:7 .
s Constants TE e M oor Abstraction

Table 2: Natural deduction for typing the structural A-terms

variable that is abstracted appears exactly once in the body, and (iii) no variables appear in a
predicating position.?? This is in accordance with the underlying structural principle that you
can’t reorder, duplicate or throw away constituents within a proposition without changing the
proposition, and that every proposition has a main relation.

In fact, there is a fairly simple way to revise our rules for constructing A-terms in such a
way that we can only construct the ‘good’ A-terms. We can straightforwardly drop the rules
Exchange, Contraction and Weakening, which allows one to reorder, duplicate and throw away
variables in the body of a term. The rule Identity allows one to construct terms like AX.Xa,
which bind variables in a predicating position.®® Simply dropping Identity would prevent one
from ever introducing variables, even in argument position, and consequently prevent As not
only from binding variables in predicating position, but also in argument position. The rule
Concretion, from figure 6, however allows us to introduce free variables into argument position
without introducing them into predicating position. Thus we can simply replace Identity with
Concretion, yielding the system in figure 6.5* (Since type assignments must always consist of
sequences of distinct variables, the only well-formed instances of Concretion are those where
2 : o does not appear in I'.) It is now possible to provide a reverse translation from A-terms
belonging to our restricted version of the A-calculus to our novel language; this is slightly more
technical and is relegated to an appendix. (The key idea is that we do not define the translation
by induction on the structure of the A-terms themselves but by induction on their proofs.)

We have observed already that there is not a one-to-one correlation between A-terms and the
properties and relations they denote. Simply relabeling bound variables will produce different
representations for the same property. But also the equations 8 and 7, which can be accepted
once we have rid ourselves of the problematic A-terms, will generate further multiplicity in way
we represent reality: for instance, § tells us that the sentence (Axy.(Fa A Gy))ab and Fa A Gb,
despite being different, both denote the same proposition. The same is true even for our new
language. For instance we can make the proposition that it’s not necessary that A in two ways:
we can glue - and O together by composition, in the way depicted in an earlier relational
diagram, to make (—O)§, and then apply it to A: ((—=0)3A)J. Or we can apply O to A and
then — to the result: (=(0A))). Thus we have the equation:

(=) 4)5 = (=(BA)5)5)

52n particular, in the term Az1...xny1...y5.-M21...20(Ny1...yx), the order of the free variables in the body
of Mzy...xn(Ny1...yx) is the same as in the A\ abstract, Azi...xny1...yx, and every variable in the string of
variables abstracted appears at least and at most once in the body. Note that these three features or closed
under ‘B-reduction’, in the sense that if (Az.M)N has them, so does M[N/z], so that we can accept as meaningful
[B-reductions of terms formed by complication.

53T0 construct this term, for instance, one can use instances of Identity and Constants, X :e =+t X e — ¢
and b a: e, toderive X : e — t - Xa : ¢ by Application. Then by abstraction one can get - AX. Xa : (e = t) — ¢.

54Notice that Concretion bears a nice formal relationship to Abstraction, and if you are familiar with the
Curry-Howard isomorphism you’ll notice they correspond to both directions of the propositional metainference
I'AFBiff ' A — B. So I think the system is highly natural from a mathematical perspective.
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We can verify these identities by translating these two expressions into relational diagrams,
and seeing that they are the same, as we did in the section 3. The differences in the above
expressions corresponds to two different orders in which you could construct the diagram for
—0A — combine the diagrams for = and O first, or the diagrams for O and A first — even
though the diagram you reach at the end is the same whichever way you did it.

It would be nice to have something general to say about equations like this one. Let us
say that a structural equation is an equation between terms in the structural calculus that
have identical relational diagrams. Ideally, we would like a general set of rules for generating
equations between terms of the structural language — an equational theory — which implies
all and only the structural equations. Something analogous to the principles 8 and 7 for the
A calculus, or the corresponding principles for combinatory logic. Indeed it is possible to do
this: in the appendix I present such a theory, which I call the theory of structural equations. In
the appendix I sketch a proof that two terms of the structural calculus are equivalent in the
theory of structural equations if and only if their translations into the restricted A-calculus are
Bn-equivalent if and only if they are associated with the same relational diagram.

Since I have emphasized the importance of 8 and 7 in particular, let me briefly present the
informal reasoning behind their soundness with respect to our diagrammatic representations.
The idea is to think of free variables as constituents, and assign them the simple relational
diagram you would assign a constant of the same type (except labeled with the variable in
question). A-abstraction on x corresponds to punching a hole where the simple constituent
x appears in the relational diagram, and application corresponds to filling that hole with an
argument. (The restriction on which legitimate A-terms exist ensures that A-abstraction is only
ever be performed to a variable that appears in argument position, occurs exactly once in the
diagram, and is the rightmost variable in the diagram.) Thus (Az.M)a should denote the result
of plugging a into the hole punched out where x is in M, i.e M[a/x], which is just what § says.
7 is justified in the exact same manner: A\z.Fx corresponds to inserting a variable diagram
into a hole in F' and then punching it out again, which leaves you with F' again. Theorem
1 of the appendix ensures that 7 is not only sound, but also complete for the structural
equations, in the sense that two terms are mapped to the same relational diagram only if they
are fn-equivalent.

7 Quantifiers and Identity

The systems of Frege, Church and Curry allow one to make all sorts of quantificational claims.
We earlier cautioned against tailoring our metaphysics merely to meet an expressive challenge.
But we should be able to meet that challenge all the same: there are many quantificational
claims that, prima facie, appear to require bound variables appearing more than once, or in
a different order to the order in which they are bound. Consider the following sentences, and
their formalizations:®®

Someone loves himself: Jz.Lxz.
Everybody is loved by somebody: Vax3dy.Lyx

Everyone loves someone they are hated by: Va3y.(Lzy A Hyx)

55There are also cases where the variable being bound does not appear at all in the scope of the quantifier:
Something is such that snow is white: Jz.A

However they seem like edge cases. When x does not appear free in A, 3z.A and Vz.A are logically equivalent
to A. So it seems like there wouldn’t be anything we couldn’t express, up to logical equivalence, if we simply
did not allow these cases.
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To analyze the first case, Church and Curry postulate a special property of loving oneself,
Azx.Lxx or WL, to which they ascribe the higher-order property of being instantiated. But
do we really need to postulate the existence of a property, loves oneself, in addition to the
relation loves, in order for there to be the proposition that someone loves himself? 1 think not,
as evidenced by Frege’s original formalism, where quantifiers, not As, bind variables: one can
directly make statements like Jz.Lzx without invoking As or combinators. Of course, Frege
himself had a fairly strong theory of grain in which there were only two propositions — but
one can easily remove these special extensionalist principles from Frege’s system to obtain a
theory that is neutral about the existence of this property (i.e. it is neutral about the sentence
IXVy(Xy = Lyy), for instance, while of course still implying Ip.(p = Jy.Lyy)).

We do not need to reintroduce bound variables in order to say that someone loves himself.
In addition to the higher-order property that unary properties have when they are instantiated
by something, there is another higher-property that relations have when they are instantiated
by the same thing in both arguments; that R has when something Rs itself. If the former is a
legitimate higher-order property, then so is the latter. Moreover, we have no special reason to
think that the latter higher-order property should be reducible to the former. It turns out there
is a reduction when you accept the metaphysics implicit in the systems of Church and Curry.
This is certainly a nice feature, but not one that we would have expected to hold antecedently.
We shall notate these two higher-order properties as follows:

e i:(oc—=t)—t
e Js5:(c—>0—t)—>t

Adopting the obvious parallel convention for the universal quantifier. We can now formalise
our first example

Someone loves himself: J5:L.

Here recalling our earlier convention of writing Jzs L for (Js2L)Y. As a relational diagram, 3z

is represented as follows:
éé

There are also two higher-order relations which take a binary relation, R, in its first argument
place, and an individual a in the second argument place to yield the proposition that something
Rs a, and something is Red by a respectively.

¢ dyii(c—=>T—ot) 50—t
e (0T —ot) Tt
Thus we can formalise the second example:
Everyone is loved by somebody: Vz(3zeR)

In terms of relational diagrams V; has the same relational diagram as the ordinary existential
quantifier (see section 2). Js. takes a binary relation in its first argument and an individual in
its second, so its relational diagram is:
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(oe]0

so that Vg (Jse R) is represented like this:

oo] o

There is clearly a general pattern here. Suppose that R is an n-ary relation between entities
of types o1, ...,0,, and that we have chosen to quantify into one or more of these argument
places at the same time; lets say exactly k argument places have been chosen (each of these
argument places must, of course, be of the same type). Then there is a higher-order relation
whose first hole is R shaped, and its remaining n — k holes are the shapes of whichever types
remain of o;...0,,. This is the coordinated existential quantifier that existentially quantifies into
the k positions indicated, and leaves the remaining n — k holes.

A hatting of a sequence of types, o1, ...,0,, is the result of putting hats on top of some of
the types in this sequence, provided the hats only appear above at most one sort of type: for
instance eété, or t(e — t)te. We write o to denote a hatted sequence of types, 01...0,,. We
write & for the result of unhatting the hatted sequence o: that is deleting all the types from
the sequence that are hatted. Unhatting the two previous examples yields et and (e — t)e
respectively. Finally, given a hatted sequence of types o consisting of the types o1, ...,0, we
write o — 7 to mean the type o1 — ... = 0, — T, ignoring any hats appearing in o. So for
every hatted sequence of types o we posit a pair of quantifiers:

V.

e

3.

e Vo:(o—t) > o —t
e dyi(c—t)>F—t

Now we can paraphrase our last example as Ves(Jeece (AL)ZH)3).

Given that these particular examples are easily translated, one should expect a more general
fact to hold: that anything you can express with quantifiers that bind vacuously, multiple times,
or out of order, can be translated into the structural calculus using coordinated quantifiers. One
way to precisify this conjecture is to formulate a variant logical system which has the ordinary
connectives and quantifiers of higher-order logic, and whose terms are obtained by the typing
system you get by adding Exchange, Weakening and Contraction to the structural type system
(but still letting Concretion replace Identity), and showing that one can translate it into the
structural calculus.%¢

One might object to the structural theory of quantification on the grounds that it is unpar-
simonious: we have posited infinitely many different primitive quantificational expressions. Let
me offer two brief responses. First, the theories of Frege, Church and Curry are all in the same
position: they posit infinitely many primitive quantificational expressions, V, and 3., for each

56Not every term should receive a translation: for instance the term Az.Rxza doesn’t correspond to a structural
term. However every term in which every ) is immediately preceded by a quantifier can be translated VoAz.A .

28



type 0. Second, the structuralist should generally resist reducing quantifiers to the higher-order
quantifiers V, and 3, even when this is possible. Quantifiers like exactly three, many, few, most,
just as many, for instance, have such definitions, but they are logically complex and therefore
denote structured entities, whereas the listed quantifiers appear to be simple.

By the same lights, the theory of Church and Curry allow one to provide reductive definitions
of identity in terms of quantification. Two things of type o are identical iff they share exactly
the same properties:

== Axy.Vot X (Xy < X2)

The relation of sharing the same properties is often call Leibniz equivalence. One can certainly
prove in a system containing H and the usual axioms for identity that a and b are identical
iff they share the same properties: a =, b < (Azy.Vo—: X (Xy < Xz))ab. But, as with the
other first-order quantifiers, this is not to say that the identity relation is the same as the thing
denoted by the logically complex expression on the right. For one might insist that identity is
metaphysically simple, while Leibniz equivalence is a structured entity that has quantifiers and
the biconditional as constituents.

So it seems independently desirable for a structuralist to take the identity symbol =, at
each type as primitive. However there is a deeper reason why the present structuralist cannot
simply adopt Leibniz equivalence as their definition of identity. While one can paraphrase away
cases in which a variable appears more than once or which they are bound in a jumbled order
using our coordinated quantifiers, we cannot paraphrase terms in which the variables appear in
predicating position, as the variable X does twice in the definition of Leibniz equivalence. Other
definitions of identity which are acceptable in orthodox type theory often fail for similar reasons:
for instance, Andrews’ definition of identity in Andrews (2002), Azy.VZ (Yw.Zww — Zxy), also
has a variable Z appearing in predicating position.

Is it possible to come up with a more cunning definition of identity that doesn’t involve
variables appearing in predicating position at all? The answer — no — follows from a more
general feature of the structural calculus that is worth examining further. In orthodox versions
of higher-order logic (with A or combinators) it is possible to define non-extensional operations
from extensional primitives.’” We saw above that propositional identity, =;, can be defined
in terms of quantification into operator position and the biconditional alone, each of which
are extensional operations. Yet on the plausible assumption that there are more than two
propositions, propositional identity is not an extensional connective: propositions with the
same truth value are not substitutable salve veritate in the context of a propositional identity
symbol, because propositions with the same truth value needn’t be identical. By contrast, in
the structural calculus, one can prove that it is only possible to define extensional operations
from extensional primitives.?®

57See §4 of Bacon (2018) or §9.5 of Bacon (Forthcoming).

581n general, we say that m-ary relations R and R’ of the same type are coextensive when Vx1..zm (RT1...Tm <
R’:c1...xm), and that individuals are coextensive when they are identical. R is extensional iff whenever x1...xy,
are coextensive with yj...yn, then Rzi...xy is coextensive with Ryj...yn (provided this is well typed). Suppose
for induction that R and S are extensional. We wish to show that (RS)?, is extensional if Z1...Zn, Tn41...Tntm
are respectively coextensive with y1...Yn, Yn+1...Yn+m. By the extensionality of S we have that Szp41...Tn+m
is coextensive with Syn+1...Yntm, and by the extensionality of R we then get that Rzi...xn(STn41..-Tntm)
is coextensive with Ryi...Yyn(SYn+1..-Yn+m), which is just to say that (RS)},x1...Tn4m IS coextensive with
(RS)™ y1...Yn+m as required.
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8 Paradox

Let us return now to the Russell-Myhill paradox. As before, we noted that it reduced the
following schemas, formulated in the system Hg (i.e. H with 5 removed, and 8 replaced with
extensional 3), to absurdity:

Predicate Argument Structure Fa=Gb— F =G ANa=25
Predicate Structure Fa=Ga — F =G

We can now describe our counterexamples more explicitly in the structural calculus. A single
proposition, O(—A) may obtained both by applying the composite operator (0-)} to the sim-
ple proposition A, or by applying the simple operator O to the composite propostion (=A4)J.
Predicate Structure is also rejected, since one can make the proposition Laa by applying (La)?
to a or applying (La)] to a, (i.e. Alice loves Alice can be made by applying loves Alice to Alice
or Alice loves to Alice). The moral is that either of these principles would be plausible if reality
were structured as the predicates and sentences of the structural calculus, clearly the sentences
((O-)3 A)§ and (O(=A)9)Y are different in virtue of their having the form of predication with
different predicates and arguments (and similarly the sentences ((Ra)ja)§ and ((Ra)?)3). The
problem is that the logical notation is obscuring the true structure of the propositions, which
are accurately represented by the relational diagrams depicted in section 3.

But apart from simply rejecting the premises of the Russell-Myhill paradox, the present view
has no reason to accept the background logic in which this result is formulated: specifically, they
have no reason to accept Extensional-3. As we argued in section 5, certain A-terms in Church’s
calculus are simply not meaningful by the lights of the structured theorist. Once we have
rejected the meaningfulness of these A-terms, what reason do we have to accept the instances
of Extensional-3 that involve them? One might point out that in particular cases we have
candidate meanings for A-terms that would suffice to make the relevant instance of extensional-
B true. We could interpret Azy.Lyx as hates, provided everyone hates people that love them
back, and conversely. But while interpretations of particular A-terms can be introduced in
this ad hoc way, we do not have a general guarantee that there are enough interpretations to
make all instances of Extensional-§ true. Consider the following term AX.Xa — illegitimate
by the structuralist’s lights — of applying to Socrates: one needs a property of properties H,
that applies to exactly those properties that apply to Socrates. But the structural picture
provides no guarantee that there is a such a property. Properties are relatively sparse on this
view: you have some fundamental properties and relations — things like is an electron, is a
space-time point, and so on — and then you have the things you can define from them using
our building operations. But there is no guarantee that one can build properties with arbitrary
extensions.”® (The analogy with languages is instructive here: one can define many properties
in, say, the language of arithmetic, like being even, being prime, and so on, but there are simply
more collections of numbers than formulas of the language so not every collection of numbers
is the extension of some predicate.) As we showed in section 6, there are some A-terms that
are meaningful by structuralist lights: for these terms one can even accept the full principle
[, where the biconditional is replaced with an identity. But outside this limited domain, the
structuralist has no reason to accept Extensional-g.

It’s also worth remembering that the derivation of the Russell-Myhill paradox turns essen-
tially on the use of a A-term that our structuralist rejects. I won’t recount the argument here,

59Uzquiano (2015), for instance, does not appeal to Extensional-3 in his derivation of an inconsistency, but
rather a comprehension principle that guarantees the existence of properties that have the extension of any open
formula. But this comprehension principle is spurious for the same reasons.
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but it involves the property of being a proposition which ascribes some property to the propo-
sition that snow is white that it doesn’t itself have: Ap3X.(p = Xs A =Xp). While the two
occurrences of the bound variable X can be paraphrased away using our coordinated quantifiers
(see footnote 68 below), there is no similar trick for achieving quantification into predicating
position.0

While the view described here is not susceptible to paradoxes that rest on Structure and
its variants, the question of consistency of the structuralist theory is highly non-trivial. Let’s
get a bit more precise about what that theory is. Firstly, there are some logical axioms that
correspond to the principles PC, Ul and MP of H. Because we are using more general co-
ordinated quantifiers the axiom of Ul is slightly more involved. Let V. be one of these quantifiers
with type (o0 — t) - & — t. If o is a hatted sequence of types containing the types o1...0,,
then we will write a : o for a hatted sequence of terms a; : 01...a,, : 0, when a; is hatted iff
o; is hatted in o, and all the hatted terms are the same. As before, we write a for the result
of deleting all the hatted elements of the sequence a. Finally Fa is just the term Faj...ay,
ignoring any hats appearing above the a;s. Ul may then be reformulated as below, where a : o.

PC Every instance of a propositional tautology.
Ul (VoF)a — Fa
MP From A — B and A infer B

To illustrate an instance of UI where a = aba : éeé, we have (Veee R)b — Raba. It corresponds
to the this instance of Ul in Church’s system: V.x.Rxbr — Raba. Since we have taken identity
as primitive we need some axioms that govern identity:

Identity a =, a
Substitution a =, b -+ A — A[b/d]

In place of 8 and n we have provided an equational theory that tells us when two terms a and
b denote the same entity:

Structural Equations a =, b when a = b is a structural equation (i.e. a = b is a theorem of
the system in figure 3).

Since our language is variable free, we do not have an analogue of the rule Gen. We could
introduce variables into the deductive system purely for the purpose of making proofs easier.
However our positive theory of structure has a stronger rule that replaces this rule.

The positive theory of structure will be formulated in what Russell called a logically perfect
language: in a logically perfect language there will be one (logical or non-logical) constant,
and no more, for each logically simple entity, and no constants denoting logically complex
entities.%! (This will mean, in line with our previous discussion, that each logical constant of
the language, such as V, and —, expresses a logically simple entity of the appropriate type.)
In such a language we can formulate two principles capturing the structured vision:

60 A more complicated trick is available for the two ps. Interestingly there is a precedent to the ban on X\
binding into predicating position in relation to the intensional paradoxes: Menzel (1986) describes an untyped
first-order theory of properties that has A expressions subject to a similar ban, which is intended to avoid
Russell’s paradox by preventing the construction the property of not applying to oneself, Az(—zz). (Of course,
such a property would be ill-typed in a typed setting, whether or not we imposed a ban on bound predicating
variables.)

61Russell (1940), p25.9In a logically perfect language, there will be one word and no more for every simple
object, and everything that is not simple will be expressed by a combination of words, by a combination derived,
of course, from the words for the simple things that enter in, one word for each simple component.’
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Distinctness a #, b provided a = b is not a structural equation.
Completeness Fla/ci], Fla/cs), ... Vo Fa

here [a/c| refers to the result of substituting all the hatted elements of a : o with ¢, and ¢y, ¢3, ...
range over all the possible terms in the language of the relevant type.

The intuition behind Distinctness is straightforward: we previously argued, by the corre-
spondence with relational diagrams, that our equational theory contained all and only the true
equations between structured entities; so we should include not only the identities the equa-
tional theory proves, but also the distinctness claims the theory doesn’t prove. There is also
an equivalent way of stating Distinctness in which it’s relationship with Predicate Argument
Structure is clearer: it roughly states that if A is identical to B, then the main relations of A and
B are the same, and the first arguments, second arguments, and so on, are all the same. (Given
any term A of the structural calculus, it is possible to identify a unique logical or non-logical
constant A™?" appearing in A corresponding to the main relation of the entity expressed by A,
and unique (possibly complex) terms A¥&! A2 expressing the first constituent, second
constituent, and so on, of the entity denoted by A. See the definition of the normal form of A
in the appendix. So the revised principle reads:

A=B > Amain _ Bmain /\Aargl _ Bargl A /\Aargn — pBaren

Evidently Distinctness should not be expected to hold in an arbitrary language: for suppose
that we had a terms F : (e > t) = (e > t), G:e — tand H : e — t — ‘female’, ‘fox’ and
‘vixen’ — that pick out the property modifier of being a female, the property of being a fox,
and the structured property of being a female fox respectively. Then the identity (FG)§ = H
would be true, even though our equational theory evidently cannot prove this identity — our
equational theory contains nothing that could distinguish one constant, like H, from another.

Completeness is also only plausible on the assumption that we are theorizing in a logically
perfect language. Consider the instance of Completeness for the familiar universal quantifier
V&:

FCl,FCQ, L F V&F

The idea here is that we have an expression in the language for every single entity of a given
type. Every logically simple entity has a name. And every structured entity is built from the
simple ones, using our general way of gluing entities together: complication. Since our language
has a device for expressing this too, every entity is denoted by an expression. Thus if for each
expression ¢ : o, Fc is true, the universal generalization Vs F is true.5?

The consistency of the structural calculus is a delicate matter. A simple way to establish
consistency would be to find a valuation: a certain sort of function, v, that maps each sentence
of the language to a 1 or a 0, such that the axioms are assigned value 1, the rules preserve value
1, and not every sentence is mapped to value 1. Consistency follows from the fact that every
theorem, but not every sentence, gets assigned value 1.

This task can be simplified by appealing to a fact about terms of type t in the structural
calculus. Say that two terms M and N are equivalent if M = N is a structural equation. The
fact in question is that every term of type t is equivalent to an expression of the form Ra;...a,
where R is a constant.®®> So the possible forms that a term of type ¢ can take are AAB, —A,

62Completeness is related to the principle Fundamental Completeness in Bacon (2019) and Bacon (2020): it
is supposed to capture the idea that everything can be built from the fundamental. Fundamental Completeness
is formulated in terms of the notion of ‘metaphysical definability’ (explained there) without having to use an
infinitary rule. Our infinitary rule allows us avoid invoking the special vocabulary of ‘metaphysical definability’.

63The analogous fact about the A-calculus is well-known (see, e.g., Hindley and Seldin (2008)), and can be
transferred to the structural calculus using theorem 3.
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=, ab, Vo Fa,...a,, and Ra,...a, where R is a non-logical constant. If the theory is consistent,
a function defined on sentences of this form can be extended to a valuation of the language by
choosing, for an arbitrary sentence, an equivalent with the desired form. We may finally define
a valuation as a function v mapping each sentence to 1 or 0 satisfying the following conditions:

e If A and B are equivalent then v(A) = v(B).

[ ]
-1

a =, b) =11iff a and b are equivalent.

( ~o
e V(AN B)=min(v(A),v(B))
e v(-A)=1-v(A)

e v(VoFa)=min.,v(Fl[a/c])

Note that the last clause gives the quantifier a substitutional interpretation. This ought to be
equivalent to a standard interpretation, in a logically perfect language, because every entity is
denoted by an expression.

One naive strategy for constructing a valuation is to assign a truth value |Raj...a,| arbi-
trarily to atomic formulae® where R is non-logical, and then proceed to extend it to other
sentences (either inductively, or some other way). Inductive definitions of this form are familiar
from definitions of truth valuations for propositional languages, or first-order languages with
the quantifiers interpreted substitutionally.

Unfortunately, the naive strategy does not work: indeed, there will be some extensions we
could assign to the non-logical relation constants for which these constraints simply cannot be
satisfied. The reasons have nothing to do with the Russell-Myhill paradox, but relate to another
paradox in higher-order logic due to Arthur Prior (Prior (1961)). Unlike the Russell-Myhill
paradox, Prior’s theorem does not rest on any assumptions about propositional granularity: it
applies equally to coarse grained theories, such as the Fregean theory, in which there are only
two propositions. In orthodox notation it states:

Prior’s Theorem QVp(Qp — —p) — Ip(Qp A p) A Ip(Qp A —p)

Prior’s theorem can be formulated and proved in our system as well. T will not revisit here the
reasons this result is puzzling; for now it suffices to say that it is simply a commitment of the
classical logical assumptions we have made so far.6®

The naive strategy cannot work, then, for the following reason: suppose that @ was a
non-logical constant, and I were simply to set its extension to contain all equivalents of (F
Vi ApAg(Qp — —q))® — the translation of Prior’s problematic sentence into the structural
calculus — and nothing else. If the clauses for assigning truth values to propositions were
satisfied Prior’s theorem would get a value of 0, yet if our truth assignment is sound for our
logic it must assign Prior’s theorem a value of 1.

The naive strategy might have looked plausible if one thought that you could inductively
extend any assignment of truth values to the atomic sentences to a valuation, as one does in
the propositional calculus, or first-order logic with substitutional quantifiers. But this is simply
not possible in propositionally quantified logic, or its extensions like higher-order logic. The
problem is this: the clause for the quantifier is not well-founded. We have defined the truth
value of (V4 F)a in terms of the truth value of Fla/c] for arbitrary c¢. But the term ¢ might itself

64 At least, arbitrarily subject to the constraint that if a1...an are respectively equivalent to al...a,, then
|Ra1...an| = |Ra)...al,|.

651f you want to revisit these assumptions, see for instance Tucker and Thomason (2011), Tucker (2018),
Kaplan (1995), Deutsch (2014), Bacon et al. (2016), Bacon and Russell (2019).
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be highly logically complex: it might introduce new quantifiers, which have to be evaluated
themselves, ad infinitum. For concreteness, note that to evaluate 3;— we must first evaluate - A
for every sentence A: one such sentence is 3;- itself! So to evaluate 3;— we have to evaluate
—3;—, which involves figuring out the truth value of the sentence you wanted to calculate in
the first place. In the present case this circularity doesn’t matter because the existential has a
true witness, -1, for which the evaluation procedure does terminate. But the circularity makes
special trouble in cases like Prior’s paradox, where the candidate witnesses of an existential, or
counterexamples to a universal, are circular in this way. See also Kripke (1976) p331-332 for
some relevant discussion.

Prior’s theorem tells us that not every assignment of extensions to the non-logical constants
extends to a valuation. Moreover, despite initial appearances, our constraints on v do not have
the form of an inductive definition of truth. None of this is to say, however, that there can’t be
any valuations satisfying the constraints. For instance, in Kripke’s discussion of substitutional
quantification, he notes that ‘even for some substitution classes violating the condition that
quantifiers not occur in terms, there may be another proof, different from the [inductive] one
just given, of the existence and uniqueness of a set [valuation, in this case] with the desired
properties. Though in this case the set would probably not be said to be inductively defined,
we could still say that substitutional truth was uniquely characterized and thus well defined.’
He then goes on to describe a special case in which valuations of this sort do exist. I thus put
forward the following conjecture:

Conjecture 1. There exists a valuation on the structural calculus over any signature of non-
logical constants.

While the naive strategy of defining a truth valuation inductively on formula complexity
doesn’t work, there are other measures of complexity which do decrease when moving from a
generalization to an instance, even when the instantiating term is very complex in the same
sense. For example, we could treat a formula of the form A =, B as having complexity
0, irrespective of the complexity of A and B. Then a quantified claim whose A-translation
binds variables only appearing under the scope of = will be such that its instances have lesser
complexity in the new sense, and this can be leveraged to prove a restricted version of our
conjecture, theorem 2 below.%¢ Indeed, I suspect the conjecture can be proved by choosing a
sufficiently crafty measure of complexity, although my attempts so far have failed.

However we can use this strategy, including the new measure of complexity, to prove various
limited consistency results. In particular, one can prove that, provided we quarantine the issues
to do with propositional quantification and Prior’s paradox, the theory is consistent. A simple
way to achieve this is to remove the propositional quantifiers from the language: the quantifiers
Vo where the hatted types in o are t. This shows that the theory is, in a natural sense, immune
to the Russell-Myhill paradox, as that is formulated in terms of quantification into operator
position.

Theorem 2. Any assignment of truth values to atomic formulae |Ray...a,| can be extended to
a valuation on the restricted language that contains no propositional quantifiers.

This is not the venue to give a detailed proof of this theorem, although I put an informal
explanation as to why it is true in a footnote.5” It’s worth noting that this consistency argument

66 And since the value of A =, B depends entirely on A and B (for instance, it does not depend on v(A) or
v(B)), the truth values of complexity 0 formulae are completely determined.

67Tt is instructive to see why the analogous theorem would be false in the case of the full M-
calculus. In H, every closed sentence A is logically equivalent to a sentence in (Bn prenex normal form:
Ve13ws...Vr,_13zn V; /\]- Aij(x1,...,xn) where each A;j(x1, ..., xn) is either an atomic formula or the negation
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works in fragments of the A-calculus that go beyond the structural A-terms. For instance system
you get from Church’s by replacing Identity with Concretion (or, equivalently, augmenting the
structural type system with Exchange, Contraction and Weakening).

It is also worth mentioning that there is a closely related theory that contains the proposi-
tional quantifiers and which is provably consistent. In this theory the logical expressions are not
treated as constants but as syncategorematic; the details are presented in Bacon (Forthcom-
ing). The picture behind this theory is that the logical operations are not entities in their own
right but merely further ways of combining entities to make structured entities, like application
and complication in the present theory. (There are no entities corresponding to application or
complication combinators because AXy.Xy and AXY.(XY)? are not structural terms.) The
idea that logical words do not stand for anything in reality, they are just further modes of com-
bination, was a central thesis of the logical atomists (see Russell (1940) p39 and Wittgenstein
(1961) §5.4).

Lastly, let me mention some limitative results. Evidently the Russell-Myhill paradox tells
us that the structural calculus cannot be extended with arbitrary A-terms satisfying extensional
B, or combinatory terms satisfying extensional I, K and S. But one might wonder which terms,
and corresponding conversion principles, in particular reduce the theory to inconsistency. A
complete survey would take us too far afield, but here is a central limitative result: there cannot
be an extensional notion of application for operators. More precisely: one cannot introduce an
operation App'~t: (t — t) — t — ¢ that satisfies.

Extensional Application App'?*MA <+ M A, where M :t —tand A :t.

The reason is simply this: one can simulate quantification into the position of a predicating
operator since any case where an operator variable appears in predicate position, like X A, is
extensionally equivalent to a case where it is in argument position, App*~?*X A. One is then in
a position to define the Russell-Myhill operator, and generate a paradox in the usual way.%®

of one, in the variables x1, ..., xn. The only atomic formulas are of the form:
e Raj...an where R is a non-logical constant.
e M =, N
e X Nj...N, where X is a relational variable.
e p where p is a propositional variable.

To evaluate an arbitrary quantified claim with the substitutional interpretation it thus suffices to be able to
evaluate the truth value of any of the above, after replacing the free variables x1, ...,z in those formulae with
closed terms. The first two cases are evaluated immediately: we have directly said whether atomic claims of the
form Raj...an and identities M =, N are true or false. The third case at least contains the predicating variable
X free, so we need to know the truth value of M N;...Ny for any relational expression M of any complexity. In
the fourth case, p is the only variable, so we need to know the truth value of A for any sentence A. Since M and
A can be arbitrarily complex, the nalve evaluation procedure will never terminate. But if we were restricting
attention to formulas that are in the range of a translation from the structural calculus, the third case couldn’t
arise, because no bound variables can appear in predicating position. Moreover, if we have banned propositional
quantifiers the last case doesn’t arise either, so the evaluation procedure always terminates.

68Recall that the Russell-Myhill paradox traded essentially on the operator expression Ap3X (p = XsA—=Xp),
which we have seen the structuralist has independent reason to believe does not denote anything. This A-term
fails to be structural for two reasons: the bound variables p and X appear twice in the body, and the bound
variable X appears in predicating position. We can solve the first sort of problem as follows. Suppose that
y:0,z:0kF A:tisastructural sequent. Then the term Az.(A[z/y, z/z]) is a legitimate structural term except
for the fact that the bound variable x appears twice in A. On the other hand, the term Az3s555 wyz.(x = wAA)
can be shown to be structural: it is the property of being an x such that there are w, y and z, all identical,
such that £ = w and A(y, z). This is clearly ought to be coextensive with the property of being an z such that
A(z,z) (i.e. the illegitimate term Az.(A[z/y, z/z])).

The other issue is that X appears in predicating position, for instance in the subformula Xp. But if we had an
extensional application combinator, App?—?*, we could replace these with the materially equivalent Appt=*Xp.

35



Why should we have expected there to be a term that satisfies Extensional Application? The
A and combinatory calculi posit entities, AX Ap.Xp and I*~¢, that satisfy stronger propositional
identities, such as I*7*MA =; M A, that imply the biconditional in Extensional Application.
But these stronger equations are unacceptable to this structuralist, and so cannot serve as an
argument that there ought to be entities satisfying the weaker biconditional. A more promising
line of argument starts from the assumption that there could be simple binary relations between
operators and propositions (i.e. of type (¢ — t) — t — t), and that their extensions ought
not to be unconstrained — God should be free to set the extensions of the simple properties
and relations as he pleases, as it were. This draws on a different analogy between reality
and language: the extensions of the non-logical predicates and relations in a language are
completely unconstrained in the usual sorts of model theories for first and higher-order logics.
Prior’s paradox teaches us that the present structuralist must reject this part of the analogy
between reality and language — one cannot introduce a simple operator that applies only to
Prior’s proposition. But even if God could set the extensions of relations between operators and
propositions however he liked, that would still not guarantee that he could stipulate that such
a relation hold between an operator and a proposition if and only if the operator applies to the
proposition: whether a structured operator applies to a structured proposition will depend on
the extensions of the simple propositions, properties and relations, so such a stipulation would
be circular and so not guaranteed to be satisfiable.5970

We mentioned in section 5 that certain operations definable in the A-calculus, like predicate
conjunction, cannot be be defined in structural logic. This is true als of predicate and operator
negation — AX\y.—(Xy) and AXAp.=(Xp). The above suggests that they cannot even be
introduced as new primitives. For instance, if we introduced an operator negation —;_,; :
(t = t) = t — t, subject to the law —;;Xp < —(Xp), we could define another operation,
(mi—t™u—t)p that obeys Extensional Application.

Let me conclude the paper by raising some questions for further investigation (in addition,
of course, to the presently open question of the consistency of the structural calculus). While
we have focused here on a particular diagrammatic theory of structured propositions, there are
many other theories of structured propositions I have not considered, and one might wonder
how general the approach to blocking paradox explored in this paper is. There are several
variants (seven to be exact) of the present theory that share its paradox blocking aspects,
which can be developed easily in the present framework. They are obtained by adding any
of the seven remaining combinations of converses, reflexizations and vacuous abstraction to
the structural calculus.”t (We observed, already, that introducing the ability to quantify into
predicating position, as permitted by the typing rule Identity, reintroduces paradox.) Another
question, then, is whether natural diagrammatic representations of these other type systems

Indeed, using these two tricks we can construct a term — namely, )xpEI%tAEt(tQt)t(tQt)t)\qu'X/q”(p =gqA
Appt =t Xs = ¢ A =(Appt~tX'q")) — which can be shown to generate the original form of the Russell-Myhill
paradox. .

69Indeed, by theorem 2 we know that any extension assigned to the non-logical constants in a language without
propositional quantifiers can be extended to a valuation, and yet the paradox from Extensional Application
can be formulated in such a language so we know that no extensions can be assigned to a constant of type
(t — t) — t — t that would extend to a valuation under which Extensional Application would hold.

"0There is a more superficial reason the paradox from Extensional Application appears surprising: it seems
(at first glance) as though you couldn’t do anything with the claim App'~*Xp that you couldn’t simply do
with Xp, suggesting that an operation like App?~? is redundant. But this is, of course, wrong: App!~? allows
one to do exactly the sorts of things that lead to the Russell-Myhill paradox, like simulate quantification into
predicating position.

"n terms of the A-rules they can be described by adding any non-empty subset of {Weakening, Exchange,
Contraction} to the A-rules for the structural calculus. The most liberal of these is equivalently obtained by
replacing Identity with Concretion in Church’s theory.
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can be presented.”> And finally, one question I have not touched on is to what extent present
work in semantics would have to be revised in light of the metaphysics postulated by such a
theory. The influence of the theories of Church and Curry is so pervasive in semantics that it
would be hard to separate the field from the theory.” The structural calculus is more restrictive
than the theories of Church and Curry, and so much work remains to show that the discipline
of semantics can be sustained within that framework.”

9 Appendix

9.1 Translating between the structural calculus, the A-calculus and
relational diagrams

In the text we defined a translation, (—)*taking terms of the structural calculus to the
A-calculus, defined by setting (c)* = ¢ when ¢ is a constant, and setting ((MN)?)* =
ALY T Y1 oo Y- M1 .0 (N yy .y ) for terms formed by complication. It is possible to define
a reverse translation from A-terms of our restricted A-calculus, given by the rules in figure 6,
into the structural calculus . We do this by way of a more general translation that maps typing
statements of the form I' = M : o to terms of the variable free language. Instead of defining the
translation inductively on the structure of the A-terms, the trick is to define it inductively on
the derivations of the typing judgments. In this system every typing judgment, I' - M : 7, has
a unique derivation (unlike the full system), so it is in fact possible to define the translation
directly on the typing judgments themselves.”® For example, we know that any judgment of
the form I' - Az.M : 0 — 7 must have been derived by Abstraction from I';z : o = M : 7, so
that we can define the translation of the former typing judgment in terms of the translation of
the latter, which we may assume has already been assigned an interpretation inductively.

e Constants: (Fc:0)®=c¢

72For instance, if the holes could be distuingushed, by colors say, one could represent R and its converse by
two binary relational diagrams with the same label ‘R’, but with its two holes in different orders. This might
correspond to adding Exchange to the typing system. One could also imagine having two holes of the same type
having the same color, which means they always get filled simultaneously.

73The A-calculus has been a central tool in semantics since Montague (1973). Combinatory logic, by contrast,
plays a foundational role in the direct compositionality program, tracing back to Jacobson (1999).

74Some methodological considerations in favour of orthodox higher-order logics can be found in Williamson
(2013).

75First, observe that it is not possible to derive a typing statement of the form I' F z : o where « is a variable,
since none of the rules introduce a lone variable on the right. We can then prove by induction on n that every
term that has a derivation of length < n has a unique derivation of length < n. Since this holds for every
n, each term that has a derivation must have a unique derivation of any length whatsoever. Derivations of
length one are instances of Constants, and so are uniquely determined by the constant. Since we have ruled out
variables, all derivable typing statements have either constants, A-terms (have the form Az.M) or application
terms (have the form (M N)) on the right of the turnstyle. If it is a constant, then it could only have been
produced by the rule Constants. Any two derivations of length < n + 1 of a A-term Az.M must end with an
application of Abstraction, preceded by an < n-length derivation of M. Both of these shorter derivations must
be identical by the inductive hypothesis, so the derivations of Az.M must be identical. Any two derivations
of length < n + 1 of an application term (M N) where N is a variable, end with an application of Concretion
preceded by < n-length derivations of M, which are the same by the IH (it cannot be derived from Application,
since that would require a derivation of N which we observed is impossible when N is a variable). Finally, if
N is not a variable, then (MN) could only have been derived by an application of Application preceded by
< n-length derivations of M and of N, which are unique for M and N among those lengths by the IH. Either
way derivations of length < n + 1 of M N are unique. (Here derivation length is defined in the obvious way:
a single application of Constants has length 1, derivations ending in Concretion or Abstraction have length 1
plus the length of their subderivation, a derivation ending in Application has length 1 plus the maximum of the
lengths of the two subderivations.)
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(MN)Za1...am b1 .bp=May...am (Nb1...byp) | M=M L

N=M 7 M=P T
M=M' N=N’
MN=M'N H MN=MN’ v
% ¢ (provided z is not free in M, N)

Table 3: Equational Theory A

e Concretion: (I,z:oF Mz :7)*=(TFM:0—7)°
e Abstraction: (' e.M :0 - 71)*=T,z:0F M :7)°

e Application: (ILAFMN :7)*=((C'FM:0—7)°(AF N :0)%)", where m and n are
the length of I and A respectively.

Now as a special case, any closed term M that can be constructed from our rules will have
a derivation ending in - M : o, and so may be converted into a term of our new language
by the above translation.”® Last, but not least, we can associate expressions of the structural
calculus with diagrams: an individual constant gets associated with a labelled grey circle,
a propositional constant with a labelled grey rectangle, and an n-ary relational constant R
corresponds to a simple relational diagram with n holes, as in rules 1,2 and 3. Assuming we
have assigned relational diagrams to M and N, the term (M N)”, corresponds to the relational
diagram obtained from our rule 4 applied to the diagrams associated with M and N.

9.2 The theory of structural equations

The goal here is to define an equational theory for the structural calculus such that an equation
between structural terms in derivable if and only if the structural terms are associated with the
same relational diagram. One axiomatization of these identities is offered in table 3. We call this
Equational Theory A. There is a subtlety here, namely that the rule ¢ is formulated in terms of a
variable parameter z. To reason in this theory we therefore need to add infinitely many variables
to the language at each type. While our notation is variable free — in the sense that there are
no bound variables, and our expressive needs can be met without them — we have adopted free
variables so as to simplify our equational theory. For this reason I will call them ‘deductive’
variables. In fact, it is possible to eliminate variables altogether, and reaxiomatize the theory in
an entirely variable free way by replacing the conclusions of  and v with complications (e.g. u
becomes p”,, where the conclusion is replaced by (M N)" = (M'N)") and replacing the rules
~v and ¢ with the following pair of closed equations:

Recompose (R(ST). )iT+s2 = (RS)s+ireT)l,

Rearrange ((RS); T). o, = (RT)L (100,5)8

T1

76In general, one would also need to show that this translation is consistent: that two different derivations of
the same typing judgment couldn’t yield different translates. But, unlike the full system in figure 1, it’s actually
impossible to find two derivations of the same sequent in the pared down system.
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We call this theory Equational Theory B.

Let us show that these two new equations of Theory B are sound with respect to the
diagrammatic reasoning. For simplicity we depict the case where R, S and T are themselves
unstructured and their holes are individual or proposition shaped (nothing important rests
on this). The first equation gives us two representations of the following structured relation,
writing ‘X7’ over a hole indicate that this stands for a sequence of r holes:

BlefE e | @

We can construct it firstly by plugging T into S after the s;th hole to make (ST)! (see the
diagram on the right below), and the plugging the result into the rth hole of R (on the left).

© @ - OfE )@

Alternatively, we could plug S after the rth hole of R (left), and T' after the r + syth hole
(right):

R

ole( o |e|-Es

Rearrange concerns the following sort of structured relation:

R
. .
You can make it by plugging in S after the rith hole in R (left) and then plugging T' (right)
into the 71 + s 4+ roth hole of the result:

ofele Jo B

remember that the r; + 1 + roth hole in R is the same as the r1 + s + roth hole, once S has be
inserted in R. Thus we could achieve the same result by first plugging 7" immediately after the
r1 + 1 4 roth hole in R (left) and then plugging S after the r1th hole.
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That these equations suffice to prove all the structural equations, however, is more involved
and treated in the next appendix.

9.3 Structural equations, fn-equivalence and sameness of relational
diagrams

Now we will sketch a proof of the following theorem.
Theorem 3. The following are equivalent, where M and N are terms of the structural calculus:
1. M and N are associated with identical relational diagrams.

2. M* = N* is derivable in the theory of nj3-equivalence (see e.g. Hindley and Seldin (2008)
chapters 6 and 7).

3. M = N s derivable in Equational Theory A (see figure 3).
4. M = N is derivable in Equational Theory B (without deductive variables).

The full proof of this theorem is technical and not suitable for this venue, however the
argumentative strategy may be presented reasonably informally. I'll begin with equivalences
between 1, 2, and 3: there will be some redundancy here, but the proof strategies for each
implication shed light on the connections between the first three criteria of identity. The
equivalence of 2 and 3 are the least illuminating, but can be shown by a routine induction on
the length of derivations. The implication 3 = 1 can also be shown by induction on derivations,
and has an instructive visualization: the idea is to think of deductive variables as constituents,
and assign them the simple relational diagram you would assign a constant of the same type
(except labeled with the deductive variable in question). The claim that the rule ¢ preserves
sameness of associated diagram amount to saying that if Mx and Nz correspond to the same
diagram, then the result of poking a hole where z is in both diagrams will be the same. The
remaining rules clearly preserve the sameness of the associated diagram. The implication 1 = 3
is a little more involved. It is proved by assigning to each relational diagram a ‘normal form’
term of the structural calculus, which have the property that no two normal form terms of the
structural calculus are provably equivalent. The terms in normal form are defined inductively
as follows:

e Constants are in normal form.

e If N;...Nj are in normal form, and R is a relational constant, then

("'(RNl):Lll NQ);?-HLH-TQN3)?13+7l1+rz+n2+7‘3"'Nk):“lf+n1+m+m+l

is in normal form (provided the result is well-typed).
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We assign simple relational diagrams their corresponding constants. Now every other rela-
tional diagram will consist of an outer grey box, the main relation, labeled by a constant R,
with a number of holes, some of which may be filled with further relational diagrams, d;...dx.
We'll suppose there is a stretch of r; unfilled holes, followed by a hole filled with d; (which
itself contributes n; further holes), then a stretch of ro unfilled holes, and then a hole filled
with ds (contributing ny further holes), and so on. Assuming, for induction, that we have
assigned normal forms to dj...dg, Ni...Nk, we may assign the entire diagram the normal form
(- (BN1)REN2) 2 s NE) ity 4 by - 2 = 1 follows by showing that every term of the
structural calculus is equivalent to the normal form associated with its relational diagram.

To complete the theorem we will show the equivalence of 3 and 4, thus connecting the final
variable free theory, Equational Theory B, to our other criteria of identity. This is crucial if we
care about a notation that completely dispenses with variables.

Recall that we have added deductive variables to the structural calculus, treating them
as if they were new constants. Given a structural term M, in a deductive variable z : o,
we will define another structural term, [z]M, that doesn’t contain z. In terms of relational
diagrams, we can think of [z]M as the result of poking holes in all the places that x appears
in the relational diagram in M. This operation is well-defined provided x does not appear in
predicating position, and if M contains k occurrences of x, [x]M will have k more holes than
M does. Thus

IfM:7, [2]M:o* 1

where 0 - 7 =7 and 0" ™! — 7 =0 — ¢" — 7. It will be convenient to write ¢(M) for the
number of occurrences of x in M (x will not vary throughout this argument).

For any term M we define ¢(M) to be the total number of occurrences of the variable z in
M.

Definition 4 (Multi-abstraction). Suppose that M is a structural term. We define [x]M as
follows.

o [2].M is undefined when M is a variable or constant.
o [2].(Mx)% = [z]M.

o [x].(MN)! = (([x]M)([x]N));TC((JE) when the above case doesn’t apply, and [x|M and
[]N are defined.
We begin by showing that the following useful rule is admissible in Equational Theory B:

M=N
[]. M = [z].N

Where the instances include all an only the cases where [z]M and [x]N are defined.

Although we ultimately want to use Theory B to dispense with deductive variables, we can
still apply the rules of Theory B to languages that contain deductive variables. Note that in
a language with no deductive variables [z]M is always undefined. We’ll say that a proof of
M = N in Theory B is nice if it only involves free variables appearing in M and N.

Proposition 5. If there is a nice proof of M = N in Equational Theory B, then [x]M is defined
iff [x]N is defined, and if they are defined there is a nice proof of [x]M = [z]N in Equational
Theory B.
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Proof. We prove this by induction on the length of the deduction in this theory. Let’s start
with Recompose. The two sides are defined in exactly the same conditions: (i) [z]R and [z]S
are defined, that 7" is the variable x and ¢ = 0, (ii) T is not = and [z]R, []S, [x]T are defined.

(i) Suppose [z]R and [z]S are defined, that 7" is the variable z and ¢t = 0. Then [z](R(ST)?, )51 +52

and [z]((RS)s+1e2T)0  amount to the very same term: ([m]R[:ﬂ]S)iiEgHHSQ, and

so the identity is an instance of the self-identity axiom ¢.

(ii) Suppose that T"is not = and [z]R, (]S, []T are defined. Then [z](R(ST)" )s***+52 and
[2]((RS)grH1H2T)L ,  are defined and, moreover, form another instance of Recompose,
where 7 is r + ¢(R), t is t + ¢(T) and s is s1 + ¢(S).

In either case [z](R(ST)% )5 TFs2 = [z]((RS)s* 1 H=2T)L , is a theorem of Theory B. Clearly
x doesn’t appear in any of these derivations, so they are nice.

Rearrange is proved similarly. The two sides are defined in exactly the same conditions: (i)
[z]R, [x]S and [z]T are defined, (ii) [z]R and [z]S are defined, t = 0 and T is «, (iii) [z]R and
[x]T are defined, s = 0 and S is z, (iv) [z]R is defined and t = s = 0 and T and S are x. They
are similarly proved by suitably chosen instances of of the axioms.

The rule pu?: Assume for the inductive hypothesis that M = M’ is a theorem. By the
inductive hypothesis, [z]M is defined iff [x]M’ is, so that [x](MN)", is defined iff [x](M'N)",

is. Moreover, [z](MN)" reduces to [x|M or ([m]M[x]N)?nTc((JX}) and [z](M'N)" reduces to

[]M' or ([x]M'[x]N );ng},) depending on whether N is a variable. Either way the resulting
equation may be derived without using x by the inductive hypothesis (that [x]M = [z]M’ can
be proved without using z), or the inductive hypothesis with another application of u,.

For the rule v we first observe that we cannot prove an equation N = N’ unless N and N’
have the same number of occurrences of x (as clearly each of the equational rules preserve this
property). This means in particular that you cannot derive N = x or x = N’ unless N or N’
is x respectively. In the case that they are both z, then [z](Mz)?, and [z](Mz)?, in the same
case: n = 0 and [z]M is defined. Moreover, the equation is an instance of self identity ¢. In
the other case, the left-hand-side is defined exactly when both [z]M and [z]N are defined, and
the right-hand-side iff [x]M and [z]N’ are defined, so given the inductive hypothesis they are
defined in the same circumstances. Moreover, the equation [z](MN)%, = [z](M N')" amounts

to ([z]M[z]N ):TTC((]X}) = ([z]M[z] N’ )ch(gvlf)) which can be derive (without anywhere using x)
from an instance of v .
The cases of transitivity (7), symmetry (o) and identity (¢) are all straightforward.

O

Theorem 6. Suppose M and N are terms of the structural calculus that do not contain de-
ductive variables. Then M = N is derivable in Theory A (possibly using deductive variables)
iff it is derivable in Theory B without using deductive variables.

Proof. First, we prove a lemma: if M = N is an equation of an arbitrary language and is
derivable in Theory A, it has a nice derivation in Theory B.

This is proved by induction on the length of proofs in theory A. The only non-trivial cases
are ¢ and 7. Suppose that x is not free in M and N, and M = N was proved by an instance
¢ from Mz = Nz. By the inductive hypothesis there is a nice derivation of Mx = Nz in
Theory B. By proposition 5, we have a nice derivation of [z]Mz = []Nz in Theory B, which
is, by definition of [z], a nice derivation of M = N as required. Now suppose M = N was
derived in Theory A by 7 from M = P and P = N. So by the inductive hypothesis we have
nice derivations of M = P and P = N in theory B, so we can conclude (possibly non-nicely)
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that M = N in theory B by applying 7. However, an easy induction shows that if Q = R is
derivable in Theory A, @ and R contain the same variables, so M, N and P contain the same
free variables and this derivation is nice after all.

It follows that every theorem, M = N, of Theory A, where M = N doesn’t contain deductive
variables, is a theorem of Theory B. (Note the proof of M = N in Theory A might involve
deductive variables even when M and N don’t, but the proof in Theory B should be carried
out in a language without deductive variables.)

Conversely, every equation of Theory B can be derived in Theory A, because you can derive
Rearrange, Recompose, " and v in Theory A (essentially using v and (). O
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